
!i
ITT. FIL1E 00P' (

Technical Report 1220
July 1988

oMachine Learning of
o Parameter Control

Doctrine for Sensor and
0Communication Systems

R. B. Kamen
R. A. Dillard

DTIC

S OCT 0 5 1988

Approved for public release; distribution Is unlimited.

.. , ,... ,...., ==ml~m m mmml l -w i m I

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed for the Office of Chief of Naval Research, Arlington,
VA 22217-5000. The work was carried out by the Architecture and Applied Research
Branch (Code 421) and the Artificial Intelligence Branch (Code 444) of the Naval
Ocean Systems Center, San Diego, CA 92152-5000.

Released by Under authority of
V.J. Monteleon, Head J.A Salzmann, Jr., Head
Architecture and Applied Research Information Systems Division
Branch

D.C. Eddington, Head W.T. RassnWssen, Head
Artificial Intelligence Advanced C' Technologies
Technology Branch Division

PK

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NOSC TR 1220

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center Code 421/444

6c. ADDRESS fflyS&a DPC"d.) 7b. ADDRESS (C1, StabdDPCode)

San Diego, California 92152-5000

8a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(f appicable)

Office of Chief of Naval Research OCNR-10P
8c. ADDRESS (C. Stale and ZDP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO. PROJECT NO. TASK NO. AGENCY
ACCESSION NO.

Arlington, VA 22217-5000 61152N ZT36 DN305 033
11. TITLE (includeSocur*C/sirakion)

MACHINE LEARNING OF PARAMETER CONTROL DOCTRINE FOR SENSOR AND COMMUNICATION SYSTEMS

12. PERSONAL AUTHOR(S)

R.B. Kamen, R.A. Dillard
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yea. Monfth. D') 15. PAGE COUNT

Final FROM TO Ju.y 1988 108
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Conhneontewrwfrcessnryod dendt Lb/ock number)

FIELD GROUP SUB-GROUP

artificial intelligence
air-search rada',.,
agile beam

19. ABSTRACT (Conmueon newise inacessary ndiderIyby block number)

Artificial intelligence approaches to learning were reviewed for their potential contributions to the construction of a system to learn

paranmcter control doctrine. Separate learning tasks were isolated and several levels of related problems were distinguished. Formulas for

providing the learning system with measures of its performance were derived for four kinds of targets.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

fl UNCLASSIFIED/UNLIMITED (E SAME AS RPT E rDTIC USERS UINC.iA,,IFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. rELEPHONE (ckAiekwCode) 22c. OFFICE SYMBOL

R.B. Kamen (619) 553-4007 Code 421

DD FORM 1473, 84 JAN 83 APR EDITION MAY BE USED t'NTIL EXHAUSTED UNCLASSIFIED
ALL OTHER EDITIONS ARE OBbLETE SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wn.0lsEad)

l

DD FORM 1473, 84 JAN UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dots frs)

CONTENTS

EXECUTIVE SUMMARY .. iv

INTRODUCTION ... 1

O bjectives .. 1
W hy Machine Learning 1
Levels of Problems 2

THE LEARNING TASK ... 4

Basic Requirements for Learning 4
Decomposition Options 4
Separation of Learning Tasks 5
Components of Empirical Learning 6
Sets of R ules ... 6
The Rule Learner ... 7
Approaches to Tasks 7
Desired Form of Learned Doctrine 9
The PRISM Architecture Building Tool 11
Rule Structuring and Organizing 11
Learning to Learn .. 12

AI APPROACHES TO LEARNING 13

G eneralization ... 13
Discrimination Learning 14
The Version Spaces Method 15
Explanation-Based Generalization 15
Learning As Search 16
Conceptual Clustering 17
C hunking ... 18
M acro-Operators .. 19
Heuristics Learning 19
Learning Evaluation Functions 20
The Composition Mechanism 20
Proceduralization .. 20
Genetic Algorithm s 20
Neural Modeling and Connectionist Approaches 21 ession For
Other Approaches to Learning 22 , CRA&I

UDiC TAB El
Unin-nolc ed El

Distributlon/ -_

Availability Codes
AIa l and.'or

' Distt Special

A RADAR EXAMPLE ... 23

The General Problem 23
A Two-Dimensional Air Radar Example 24
Sim plifications .. 25
N otation ... 26
The Rule Learning Process 27

EXPERIM ENTS ... 29

Example: Clustering, Task A 31

FINDINGS AND ACCOMPLISHMENTS 34

System Structure ... 34
System Goals .. 34
Results and Conclusions 35

REFERENCES .. 37

G LO SSARY ... 41

APPENDIX A. A Two-Dimensional Air Radar Example A-1
Situation per Beam Position A-2
Situation per Scan A-2
Parameter Selection Strategies A-4
Target Types .. A-6
Form ulas .. A -6
Performance Measures A-8
Com putations .. A-9

APPENDIX B. Preference Criteria for Hypotheses B-1

APPENDIX C. Parameter Changes C-1

APPENDIX D. Terminating Conditions for the Learner D-1

APPENDIX E. Backus-Naur Form Specification of a Language for
Inputting the Description of a Problem to the Learning
Program s .. E-1

APPENDIX F. Text of the Learning Program, DISCRIM F-1

APPENDIX G. Log of a Session Running the Learning Program,
DISCRIM G-1

ii

FIGURES

1. Example of a Constraint on a Component Performance Measure -
A Limit on False-Track Units 1

2. Interaction of M odules 30

Figure Al. Situation Space A-3

Figure A2. Parameter Space A-5

Figure A3. Formulas for Detections per Cell A-9

Figure A4. Values of Detections per Cell A-9

Figure A5. Performance Measure Values for Parameters Resulting in the
Minimum Value of the Overall Measure A-11

Figure A6. Overall Measure versus Scan Time A-12

iii

EXECUTIVE SUMMARY

OBJECTIVE

Increasingly complex sensor and communication systems are being developed
and, as this complexity increases, the problem of analytically determining the opti-
mum set of rules or control logic for these systems becomes computationally intrac-
table. For this reason, a learning system is needed.

APPROACH

Artificial intelligence (AI) approaches to learning were reviewed for their
potential contributions to the construction of a system to learn parameter control
doctrine (in this case, a set of rules which can be used to control sensor or commu-
nication systems). Separate learning tasks were isolated, and the advantages, disad-
vantages, and limitations of the AI learning approaches relative to those tasks were
determined.

Several levels of related problems were distinguished, ranging from the
choice of parameters in a given situation to the design of a system of sensors capa-
ble of handling a given set of scenarios. In order to relate ideas on learning tech-
niques to an application and to uncover some of the many aspects of the problem, a
simple agile-beam air-search radar optimization case was chosen. Formulas for pro-
viding the learning system with measures of its performance (e.g., relative to target
acquisition and track quality) were derived for four kinds of targets.

RESULTS

A study of the relative merits of different representations led to the selec-
tion of a production system architecture capable of learning control doctrine, and
to the conviction that functionally independent aspects must be represented and
accessed separately. A tool for constructing production system architectures from
basic building blocks, PRISM, was obtained to facilitate experimentation with
architectures for the learning system. One of the learning systems that resulted
from this effort supports the following four different goals: (1) if the goal is to sat-
isfy the constraints on the problem, a parameter setting is produced directly from
the production memory that is augmented during learning to improve its ability to
pick a near-optimum setting on the first attempt; (2) if the goal is to obtain an opti-
mum solution, a series of solutions are reported, with each subsequent solution an
improvement over the previous one, until the user stops the system from seeking a
better solution; (3) if the goal is to learn, new productions are generated by one pro-
duction memory to augment those in another; and (4) if the goal is to monitor the
program's efforts, every step in the decision of a choice of parameters is reported.

iv

INTRODUCTION

OBJECTIVES

The objectives of this research are both theoretical and practical. On the theo-
retical side, we seek to codify and extend the basic theory and techniques of artificial
intelligence (AI) to encompass the problems which arise in domains such as radar
parameter control involving numeric attributes embedded in a more complex condi-
tional doctrine framework. We expect our orientation towards developing machine
learning approaches to advance the development of techniques for the acquisition of
knowledge which is not readily formalized, and to contribute to the development of
tools for refining weak general problem-solving methods into strong domain specific
ones. On the practical side, we hope follow-on work can carry the results of this
research into eventually producing understandable and explainable collections of
doctrinal rules for controlling the parameters of specific sensor and communication
systems.

WHY MACHINE LEARNING?

Why pursue machine learning techniques for developing parameter control
doctrine?

Analytical methods are intractable because of space or time on complex prob-
lems. For highly complex systems there are too many options and dimensions, and
the computations are too time consuming. Heuristics for improving parameter set-
tings may provide solutions satisfying constraints in cases where we were unable to
obtain solutions before, and solutions of higher quality. The techniques may help to
optimize some of the Navy's command, control, and surveillance functions.

An example of a typical constraint on a solution is the rule to reject any
parameter set that results in a component performance measure out of range of its
allowed values (Figure 1). (In our case, a parameter set will be rejected if it exceeds
its maximum allowed value since the measures have been converted to range from 0
on up and each has a specified maximum allowed.)

U, ,

1 MAXIMUM ALLOWEDv 1 0 0
- 7 -

LA.

0 0.1 1 10

FALSE-TRACK RATE (PER HOUR)

Figure 1. Example of a constraint on a component
performance measure - a limit on false-track units.

LEVELS OF PROBLEMS

There are three levels of problems. In the first level, a particular sensor or
communication system is functioning in a specific situation, and the problem is to
optimize performance by appropriately setting the relevant parameters. Examples
of parameters which may be set are the direction, power, and frequency for a sensor
beam.

In the second level, instead of a single situation, the system is matched to
a set of situations/scenarios and must find a control logic appropriate for all the
situations and scenarios.

In the third level, a system of sensors or communication elements must be
designed to deal with expected scenarios. If, instead of a single system, the designed
system is a complex multiple system, it will have to distribute tasks among receivers
in addition to setting the parameters for each receiver.

To summarize, the levels of problems are as follows:

(1) Particular optimization problem

Given: A particular sensor or communication system, fully described
(its specific capabilities identified)

Situation and environment

Requirements on a solution

Find: (three sublevels of increasing difficulty)

(a) A set of parameters which satisfy the requirements on a
solution;

(b) A near optimum set of parameter settings; and

(c) The set of parameter settings which optimize the performance
of the system.

(2) Learning of doctrine for parameter control

Given: A fully described sensor or communication system

A set of situations and scenarios it is likely to face

Find: Control logic to make the system function optimally or near
optimally, whatever the situation or scenario.

2

t

(3) Design of a system of sensors, given scenarios

(a) A single system

(b) A complex multiple system, such as an intercept system consisting of
several receivers for warning, analysis, and direction finding, where it
is necessary to divide the effort between components of the system as
well as to set the parameters of each component.

3

THE LEARNING TASK

BASIC REQUIREMENTS FOR LEARNING

The learning system must be able to do the following-

Generate alternatives - produce new behaviors from which to learn from its
"mistakes."

Determine the results when performance is

satisfactory

unsatisfactory

better than prior performance \ for a system attempting to

worse than prior performance ! optimize performance.

Attribute credit or blame to some component of the performance system.

Modify its future behavior.

DECOMPOSITION OPTIONS

In tackling complex applications, it is advantageous to decompose the
problems to devise shortcuts for finding their solutions. Five broad options
for decomposition are assessed for the problem or learning control doctrine.

The first option is to break up the effort by parameter. After generating
and solving a set of subproblems for learning to set (or change) each parameter
separately, the resultant doctrine for a given parameter can be assembled with
collections of rules for other parameters to form the complete set of doctrinal rules.
Once the doctrine is learned, rules for different parameters can be collapsed wherever
they have the same antecedents (left sides), and the consequents (right sides) can be
compounded. Although this alternative sounds simple, it does have some disadvan-
tages. Parameters may not be entirely independent. Thus, the learned doctrine for
a given parameter could be affected by how the other parameters are assumed to
be assigned. Performance measures are a function of several parameters at once,
and optimizing those measures involves the simultaneous modification of several
parameter values.

A second way to decompose the learning problem is to break it up into a set
of subproblems for applying optimization techniques individually, that is for finding
conditions on the application of the optimization techniques. Again, the resulting
collections of doctrine may be assembled and integrated. However, this decomposition
option is only appropriate for Task F (page 5).

4

A third approach is to break up the learning problem into a set of sub-
problems, one for each performance measure. This will prevent us from overlooking
valuable factors which partially cancel out when all performance measures are com-
bined into the overall measure. We are pursuing this approach.

A fourth approach maps problems into simple representations. Solutions to
simpler problems can function as skeletal solutions to more complex problems. Infor-
mation gleaned in solving simpler problems can be applied to more complex problems.
Additionally, a repertoire of techniques for handling simpler problems can be con-
structed along with the guidelines for combining them when tackling more complex
problems. And, finally, we may choose the most appropriate representations of the
problems for both learning and performance, even if they differ radically, and set up
mechanisms to translate between the representations. In this case, the translation of
learned material can be interpreted as operationalizing that information.

A fifth option is to construct intermediate features which classify the situ-
ation with respect to the appropriate techniques for obtaining performance goals.
The intermediate features could be either features of parameters or features of condi-
tions (situations). This move introduces new levels of abstraction in which the num-
ber of dimensions to consider is reduced. In some domains, depenidencies between
factors can be found. Then it becomes possible to extract primitives from which
some dependent factors can be derived, enabling simplification of representations at
another level. A technique called proportionality graph analysis is used to assess the
contribution of this approach.

Additional strategies, which do not fit so neatly under the designation of
decomposition options, such as analyzing extremes, exploiting symmetries, per-
turbation analysis, and finding analogies to solved problems are also considered.

SEPARATION OF LEARNING TASKS

Nine learning tasks have been isolated from the domain, and designated as
Task A, Task B,... and Task I. What must be learned for each task is as follows:

Task A: Principles of assigning values to parameters.

Task B: Principles of modifying parameter values.

Task C: Intermediate features of conditions describing situations
(characteristics of situations that occur together and that have the
same significance for parameter control decisions).

Task D: Intermediate features of parameters (setti,.,-s or changes of values
to be made together).

Task E: Equivalent units to use in balancing different performance
measures.

Task F: Heuristics to use in applying performance optimization techniques.

Task G. Empirically discoverable quantitative relationships between
performance measures and parameter values.

5
--

Task H: Principles for diagnosing a situation as one of a type requiring a
specific approach or treatment.

Task I: Paradigm situations to draw upon via analogy to determine
parameter settings or changes.

This project addresses Tasks A through D.

COMPONENTS OF EMPIRICAL LEARNING

Learning from experience involves the following four subproblems: aggrega-
tion, clustering, characterization, and storage or indexing.

The aggregation problem consists of identifying the objects and their attri-
butes (or entities) from which concepts will be formed. These are the objects or enti-
ties on which learning will take place. To solve this problem the learner must identify
part-of relations.

The clustering problem consists of identifying which objects, entities, or
events should be grouped together into a class to generate an extensional definition
of the concept to be learned. The learner must identify instance-of relations to solve
this problem.

The characterization problem consists of formulating some general description
or hypothesis that characterizes the instances of the concept. The learner solves this
problem by generating an intensional definition of the concept.

The storage or indexing problem arises for learners that need to use the
knowledge they acquire. The characterization generated in solving the last problem
mLst be stored so that it may be retrieved and employed in the performance of tasks.

SETS OF RULES

Performance Set

Conditions are descriptions of the situation.

Actions are suggested parameter settings.

This set is the parameter control rules system.

Learning Set

Conditions are descriptions of parameter setting cases and their associated
performances.

Actions consist of adding rules to the performance rule set or altering the
weights of rules already part of the set.

6

THE RULE LEARNER

The rule learner is a collection of mechanisms for the following-

generating new rules (often variants of existing rules);

weighting rules. (If they are relearned or used advantageously, they
may be strengthened.);

abstracting to more general rules;

discriminating poor rules. (Making more specific variants in response
to finding differences between contexts in which a given rule suggests
less valuable actions, and contexts in which this rule suggests more
valuable actions.);

proceduralizing memory elements to form rules;

composing rules into a single rule where they fire in sequence; and

open-ended possibilities for the construction of arbitrary LISP (or
other) functions to encode additional techniques as needed.

APPROACHES TO TASKS

Solutions to the Aggregation Problem

There are several ways to look at the learning tasks. For example, various
solutions to the aggregation problem can be seen as differentiating Task A through
Task D and Task F (page 5). If individual cases or instances are chosen as the entities
on which learning will occur, we will have a collection of cases each consisting of a
set of values for situation variables and already set parameter values. Among the
values could be included the performance measures taken of results of the setting
event. Thus, we would have the right ingredients for learning intermediate features
of conditions describing situations as in Task C.

If, instead of individual cases, entities become pairs of cases combined with
the associated information on performance measures, we can accomplish Task A
(learning the principles for assigning values to parameters, given the situation). Indi-
vidual cases of changes in parameter settings form the entities for Task D enabling
us to learn the intermediate features of parameter changes to be made together.
Pairs of cases of changes in parameter settings allow us to tackle Task B and learn
the principles for modifying parameter values. The entities needed for Task F are
traces of the application of a curve-fitting or other numerical technique to a domain
optimization problem.

Solutions to the Clustering Problem

The solution to the Task A clustering problem involves assembling the pairs
on the basis of whether the parameter settings meet the constraints on solutions, and
on the basis of their ratings on the performance measures. There will be a minimum
of four classes of pairs: (1) a class to place pairs if both fail to meet the constraints

7

on a solution; (2) a class to encompass pairs of which one is a viable solution and the
other is a failure to meet the constraints on a solution; (3) a class to place pairs of
instances where both are solutions, but one has a better overall performance measure
than the other; and (4) a class of pairs of solutions each having equivalent ratings on
the overall performance measure. Using the relationship of the performance measures
for each of the two cases in the pair, we can examine two classes for each perform-
ance measure, one instance as better vs. both equivalent in performance. However,
these will be overlapping classes and will need to be handled in special ways. There is
also the option of using the balance of the performance measures in clustering the
pairs.

For Task B, the pair clustering results in three classes. Both parameter
changes may show an improvement in performance measures, both may be degraded,
or one may be improved and one degraded. Finer distinctions may be made on the
relative performance measure changes in each instance, on which performance meas-
ures are involved and how they are improved or not in efforts to achieve balance.

The solutions to the clustering problem for Tasks C and D also use the per-
formance measures, and even more gradations are possible in the approach to these
tasks. The performance measures can extensionally identify a minimum of two classes
above and below a threshold value for the performance measure where we select
a single cutoff, or we may use multiple cutoffs for the desired number of classes.
After characterizing the clusters symbolically using observable attributes, the pro-
cess of clustering and characterizing continues by generating subclassifications of
the clusters for each parameter setting.

Solutions to the Characterization Problem

The concept to be learned for Task A is a complex disjunctive relational con-
cept, "<parameter setting> is good for < situation > ". This 'is good for' concept
can be interpreted in multiple ways as expressing quality for an overall performance
measure or for each separate performance measure, thereby heralding a series of
concepts.

Likewise for Task B, the concept to be learned is "< parameter setting>
improves < performance measure> in < situation >". If the overall performance
measure is assumed, <performance measure> need not be explicit in the relation.

Initial rules for setting parameters can be treated as hypotheses and used to
predict whether an instance will be positive or negative. Such predictions can be
divided into four classes:

A description can correctly match against a positive instance of the concept
being learned. Using Task B for the example, a parameter change which leads to an
improvement in performance can be seen as a positive case of the rule which proposes
it.

A description can correctly fail to match against a negative instance of the
concept being learned. None of the rules should match cases in which a parameter
change leads to a degradation of performance.

8

A description can incorrectly fail to match a positive instance of the concept.
This is called an error of omission, and suggests that the hypothesis or rule is too
specific.

A description can incorrectly match against a negative instance of the concept.
This is called an error of commission, and suggests that the hypothesis or rule is too
general. The rules should not propose parameter changes that degrade performance.

Solutions to the Storage or Indexing Problem

The representation of acquired knowledge for Tasks A, B, and F will reflect
the need for the use of that knowledge in the production system architecture. On the
macrolevel, this information is stored in disjunctive rule choices, while on the micro-
level, it is entered as production rules. We implement rules which themselves have
action-sides specifying that additions and changes be made to certain procedural
memories. Some of the learned material is hidden in alterations to activation values
or strengths associated with already present rules. This will be discussed in more
detail under the description of the PRISM architecture building system.

For Tasks C and D, concepts are constructed which may be added both
to object hierarchies and to the individual cases as new attribute-value pairs. At
present, the additions are not made automatically during the functioning of the
learner as they are for Tasks A and B, but must be done by hand in setting up the
representations for the instances and in constructing the hierarchies.

There are a variety of alternatives for indexing and recognizing concepts
stored hierarchically. One of the best approaches appears to be Gluck and Corter's
(1985) category utility which measures the average extent to which knowledge of
category membership increases certainty about the attribute values of category
members. Formally, given a partition {C1, C2,...,Cn} over a set of objects which
have attributes Ai with possible values Vij, category utility equals:

I P(C) =Yj P (Ai = / N
k = J j

This value is used as a measure of the quality of concepts in an incremental
concept formation system, COBWEB/1 (Fisher, 1986).

DESIRED FORM OF LEARNED DOCTRINE

Since we wish to generate doctrine for use by humans, we have been most
attracted to doctrine as expressed in rules. Learning systems can very naturally be
expressed using rule-based systems.

9

Overview of Production Systems

In terms of structure, production systems consist of two main components:

(1) a dynamic working memory containing the current state of knowl-
edge in the problem solving effort; and (2) a more stable production
memory, stated as a set of condition-action rules or productions;

In terms of behavior, production systems have three main processing stages:

(1) the match process, in which conditions of rules are matched against
the contents of working memory to determine what rules will be
applicable to the current problem; (2) the conflict resolution process, in
which some rules are selected for application; and (3) the act process,
in which selected rules are executed.

Production systems operate in cycles, with actions on one cycle leading to new

matches on the next cycle because of changes in the working memory.

Advantages of production systems for learning are the following:

Homogeneity - all rules have similar form.

Independence - knowledge is broken up into small modules.

Stimulus/response flavor - conditions may 'respond' to external
stimuli.

Goal-driven behavior - conditions may be sensitive to goals.

Parallel or serial in nature - recognize-act cycle.

Separable memories - blackboard and knowledge base are analogous to
short- and long-term memories.

Rule preference can change over time using activation or strength-
based conflict resolution.

Modularity of knowledge makes it possible to learn by adding
productions in addition to strengthening productions.

Variants can be derived by generalization (specific to general);
discrimination (general to specific); composition (combining rules); and
proceduralization (instantiating rules).

10

THE PRISM ARCHITECTURE BUILDING TOOL

PRISM (Ohlsson & Langley, 1986) provides the building blocks for synthesiz-
ing production system languages. We use PRISM to formulate a system capable of
learning heuristics for controlling the parameters of sensor and communication
systems.

PRISM describes a very comprehensive space of interesting production system
architectures by providing ways to specify the organization in terms of components
(or schemas), each of which has a small set of associated parameters. The PRISM
building blocks may be used to define numerous well-known production systems,
such as OPS4 and ACTE, in addition to others generated for individual research
projects or theses.

The developers of PRISM consider its major contribution to be that it consti-
tutes a framework for the discussion and comparison of alternative production system
architectures. For this project, PRISM's contributions were that it facilitated experi-
mentation with architectures for learning, and it eliminated some of the routine
programming implementing new production system languages.

Except for the rete-network pattern-matching process developed by Forgy
(1979), which was chosen for its efficiency and the overall structure of the inter-
preter, nearly every aspect of the default PRISM architecture can be modified by
the user. The rete pattern matcher will handle virtually any structure. Notations
chosen for representing knowledge are neither legislated nor enforced by the PRISM
architecture. We can define as many working memories and procedural memories
as needed, and may create selection processes to execute those productions (found
by the matching process to be satisfied) on the basis of the cycle or the order in
which the element was added to working memory, complexity, or activation. Each
declarative memory can have quantitative attributes which we may interpret as
activation, strength, probability, etc., and which may be initialized, propagated,
updated, accessed, and used differently for different memories. Different procedural
memories may be given different selection schemes and be organized hierarchically.

The flexibility of PRISM allows productions in one procedural memory to gen-
erate productions that can be added to another. In addition, all kinds of experimental
organizations of productions can be pursued simultaneously.

RULE STRUCTURING AND ORGANIZING

Metarules can be generated automatically to partition the domain into man-
ageable segments. The value of adding a particular metarule to the rule collection
can be calculated by examining the cost of evaluating that rule (a function of the
number of conjuncts in its premise) with respect to the product of the chance of
the premise being evaluated to true and the amount of pruning of the space of rules
accomplished by the metarule. These metarules could focus attention on the seg-
ment of the knowledge base having rules with premises capable of evaluating to
"true" given the current facts. If a particular conjunct appears in many different rule
premises, evaluating this conjunct first and ordering the rules on the basis of this

11

conjunct could improve the efficiency of traversing the rule space. Metarules gener-
ated to effect this ordering could take the form of ruling in a collection of rules, or of
ruling out some collection of rules, or both.

Metarules could distribute productions to different procedural memories. In
PRISM, the rule space can be partitioned and the resulting partitions treated as if
they were never segregated, or in a whole panorama of different ways.

LEARNING TO LEARN

A metalevel of learning can be described in which the approach is to learn
heuristics for searching the rule space. The learning literature contains various exam-
ples of learning heuristics to direct search through problem spaces. The techniques
used in these learning systems can be applied to the problem of learning heuristics to
direct search through a space of rules. Thus, a system should be able to start with
very general and simple learning methods and improve its ability to learn with expe-
rience. All that is needed is a complete solution path to use as the basis for assigning
credit and blame. Successive hypotheses form a path through the space of rules. If the
techniques for generating the path of hypotheses can be described, then we can assign
credit or blame to those techniques which created or learned the rules used in the
performance system. Once these techniques are isolated, the approach can be applied
recursively, essentially collapsing any rules for learning to learn to learn into the first
metalevel of learning to learn. However, no obvious way exists to represent powerful
methods, such as data-driven generalization or discrimination techniques, in terms of
modifiable rules at the metalevel. For the learning of learning heuristics, it is neces-
sary to represent those techniques and all conceivable variants so that they may be
"found" by the learner learning to learn.

However, in the particular domain of radar parameter doctrine learning there
may be a way to specify some of the metalevel learning principles. This is an area for
future attention.

12

Al APPROACHES TO LEARNING

GENERALIZATION

One method for learning symbolic conditions begins with very specific infor-
mation and generalizes as more data become available. Usually the hypothesized
conditions are initialized to the first positive instance. A new positive instance is
compared to the current hypothesis and only those features held in common by the
instance and the hypothesis are retained in one or more revised hypotheses. If some
hypotheses become too general, incorrect classifications occur and the hypotheses will
be discarded.

As a technique, generalization refers to a method for abstracting from the
details of positive and negative examples to form hypotheses (rules) which cover the
data. This technique cannot recover from learning trials in which instances are
misclassified, so it is unsuited to noisy data. It also requires that the concept to be
learned does not change over time, and that the representation language is sufficient
to describe the concept. Generalization has difficulty learning rules with disjunctive
conditions, since the search is for features held in common by all of the positive
instances.

Descriptions can be made more general by removing conditions, replacing con-
stants with variables, replacing a term with another which is its ancestor in a tree
expressing what are called IS-A hierarchies, adding elements to lists of allowable ele-
ments, or increasing the size of an interval of allowable values. Work using generali-
zation techniques is described by Winston (1975), Vere (1980), Mitchell (1982), and
Dietterich and Michalski (1983).

Generalization-based approaches to learning are not suited to the learning of
heuristics because they do not provide sufficient variety. In learning heuristics, the
system begins with extremely specific hypotheses which are only capable of very con-
servative moves, so it will begin by making no bad moves and missing some good
moves. Where a system must generate its own instances of the use of heuristics, there
is no great penalty for errors of commission, which indeed are necessary if the system
is to learn, and yet with the generalization method, very few will be made. However,
the price of omissions is great since learning is impossible if the behavior which pro-
vides the instances is absent. Generalization is most appropriate if there is a benevo-
lent tutor to present positive and negative examples which are typical and which
cover the space of the concept's applicability.

However, for heuristics learning, analytical generalization (in contrast to
simple generalization) is highly attractive because of its minimal need for examples.
Each case is milked fully by attending to the reasons (causes) that make it an
instance of the concept of interest. This focuses the generalization effort toward just
those features which are important to the goals at hand. The literature contains pro-
grams which are able to learn new concepts on the basis of just one instance. The
background knowledge of causal connections may have to be considerable, however.

13

Analytical generalization, which will be discussed further below, would be
ideal as an adjunct to constructive techniques which can add the variety missing in
simple generalization techniques. Constructive techniques free the learning system
from the dangers of representations which restrict the forms that can be learned
too severely. The bias of the learning system is flexible in systems with constructive
capabilities.

DISCRIMINATION LEARNING

This learning technique starts from one or more overly general rules and gen-
erates more specific versions through a process of discrimination. This occurs when
one of the current hypotheses (rules) leads to an error. The context in which the
faulty rule matches the negative instance is compared to some context (usually the
last context) in which that same rule matches a positive instance. The comparison
reveals differences between the positive and negative instances. For each difference
found, a more specific hypothesis can be constructed (or strengthened) which will
match against the positive and not the negative instance. The ability of each hypothe-
sis to account for the data distinguishes useful variants of hypotheses from spurious
ones.

Descriptions can be made less general by adding conditions, replacing vari-
ables by constants, replacing a term with another which is its descendant in a tree
expressing what are called IS-A hierarchies, removing elements from lists of allow-
able elements, or decreasing the size of an interval of allowable values. These are just
the reverse of steps described above for generalization.

The discrimination learning technique can handle both relational and
attribute-value representations, it can acquire rules containing complex negated
conditions, it can learn from far misses as well as near misses, it can learn in the
presence of considerable noise, and it can learn rules which have value heuristically
in spite of inadequate representations. Since the discrimination method compares
instances to other instances rather than to hypotheses which summarize those
instances, it does not attempt to find features common to all positive instances, and
can easily learn rules with disjunctive conditions. We use this learning method in our
research. Other work with the discrimination method includes ID3 (Quinlan, 1983),
and SAGE (Langley, 1985).

The discrimination method is ideal for the learning of heuristics because,
in the move from general to more specific hypotheses, discrimination will not at
first omit desirable moves, although it will consider many undesirable ones as well.
The performance will become less rash as the correct hypothesis is approached dur-
ing the discrimination process. Only those heuristics which have been proven to be
inappropriate will be removed from consideration.

14

THE VERSION SPACES METHOD

The version space approach incorporates aspects of both the generalization
and discrimination methods (Mitchell, 1977). This approach begins with a very
specific hypothesis and generates more general versions (S) by extracting common
features of the newly encountered positive instances. It simultaneously begins with
a very general hypothesis and generates more specific versions (G) as more data is
processed. However, instead of testing the first set of hypotheses (S) against negative
instances to see if they are overly general, it tests them against the already processed
set (G). Similarly, more specific versions of the set (G) are found by comparing nega-
tive instances to the hypotheses in the processed set (S). As more instances are
gathered, this multidirectional process converges on the hypothesis best suited to
summarize the data.

Unfortunately, this method encounters almost all of the disadvantages of
the generalization approach. It searches for features held in common by all positive
instances, so it has the same difficulty with disjunctive rules, noise, inadequate repre-
sentations, and concepts that change over time. The only problem it does not have is
the introduction of variety, which is accomplished by the discrimination component
of the technique. We are not currently employing this approach in our research.

EXPLANATION-BASED GENERALIZATION

Explanation-based generalization, also called learning by analytical generali-
zation, starts from a goal concept, a training example, a domain, and an operation-
ality criterion. An operational description of the goal concept that covers the
training example needs to be found. More precisely,

goal concept = a nonoperational definition of the concept to be learned.

training example = a single positive instance of the goal concept.

domain theory = a set of rules to be used in explaining how an entity
satisfies the goal concept.

operationality criterion = a test specifying the form of the definition to be
learned.

The process consists of two steps, explanation and characterization. The expla-
nation is constructed using the domain theory to prove that the training example is a
positive instance of the goal concept. All the nodes of the explanation tree produced
by this process must be operational. The characterization is constructed by determin-
ing a set of sufficient conditions under which this explanation holds, stated in opera-
tional terms. The goal concept may be regressed through the explanation tree to
accomplish this.

15

This analytic approach to learning has various advantages. It does not require
extensive search through the space of concept descriptions or rules, since the explana-
tion leads directly to the learned description. It handles disjunctive concepts, since it
finds only sufficient (rather than necessary) conditions on the concept. It can learn
from a single positive training instance; negative instances are not required. It can
handle noisy data, since the explanation process will catch misclassified instances.
Finally, it provides a justification for the characterization of the concept description
which is based in the operationality criterion and the explanation.

There are also some disadvantages to the analytic approach based on explana-
tion. It lacks generality since it must be grounded in a rich enough framework of
domain knowledge to form the explanations. The search that is saved in the space of
concept descriptions is required in the space of explanations. Where multiple explana-
tions are appropriate, search through the space of concept descriptions may still be
necessary.

Within the domain of radar parameter control, there is a body of analytic
relationships which may lend themselves to exploitation through explanation-based
learning. This is an area for future attention. Researchers in this area include
Mitchell, Keller, and Kedar-Cabelli (1986), and DeJong and Mooney (1986).

LEARNING AS SEARCH

Search plays an important role in machine learning, as it does in the rest
of artifical intelligence. In machine learning, search occurs in the space of rules
or hypotheses rather than just through the space of simple problem states. Most
machine learning systems use rather straightforward search methods (such as depth-
first or breadth-first search), and search through the space of hypotheses often takes
advantage of its partial ordering on the basis of the generality of the hypotheses.
However, the operators for search may themselves involve search, and are generally
more powerful than operators found in other problems for which AI approaches are
used. The direction of search we saw could be from specific to general, as in generali-
zation, or general to specific, as in discrimination, or both, as in the version spaces
method.

Search always occurs in some problem space, and can be constrained in a vari-
ety of ways. The constraints on search in the context of machine learning are called
the bias of the learning system. Bias can be attributable to the representation or to
the search organization. Representational bias results from considering only certain
features of the instances (only those expressed in the system), or from allowing only
certain forms of hypotheses. Many learning systems are restricted to learning only
hypotheses which can be expressed as conjuncts, for example.

Search bias occurs when hypotheses that violate certain constraints are eli-
minated from consideration. For example, many systems will reject any hypotheses
which are inconsistent with the data, thereby making them sensitive to noise. Order-
ing hypotheses by some criterion also constitutes a bias. In Appendix B, we list the
preference criteria considered for inclusion in our learning system. All learning
systems must have biases or no learning could take place. Methods for shifting or

16

weakening inappropriate biases may include changing the characteristics of the lan-
guage in which hypotheses and data are described, altering the space of hypotheses
which may be considered, varying the procedures which define the order in which
hypotheses are considered or valued, and changing the acceptance criteria for deter-
mining when a search procedure has found a "good enough" candidate hypothesis.

Strong bias is one that focuses the learner on relatively few hypotheses. An
incorrect bias is one which prevents the learner from discovering the correct hypothe-
sis. Paul Utgoff (Utgoff 1984) addresses the problem of altering incorrect or weak

n biases to improve learning abilities.

CONCEPTUAL CLUSTERING

Conceptual clustering is an outgrowth of the older data-analysis methods of
cluster analysis and numerical taxonomy in which the task is to find a hierarchicalp classification tree that summarizes data given in the form of attribute-value repre-
sentations of a set of objects. The intent is to maximize intracluster similarity while
minimizing intercluster similarity. Distance in N-space is commonly used to measure
similarity. However, only the objects themselves are used to evaluate the clusterings
and, in the worst cases, the results can be uninterpretable.

Michalski and Stepp (1983) have formulated the task of conceptual clustering
which, in addition to generating the hierarchy, demands that intensional descrip-
tions of the resulting clusters be produced. The quality of those descriptions figure in
the evaluation of the clusters. The resulting clusters are more conceptually coherent
than those generated by traditional methods.

In numerical taxonomy approaches, objects are represented as points in an
N-dimensional space. The method typically proceeds by creating a cluster from the
two closest objects in the space, removing them and creating a new object whose
coordinates are the average of its members' coordinates, continuing until all objects
are included in a single cluster.

In contrast, CLUSTERI2 (Michalski & Stepp, 1983) employs generalization to
cover all the objects from an initial selection of N seed objects, using them to simu-
late positive and negative instances. Once the set of objects is clustered on the first
round, a new set of N seed objects which constitute the central tendency of the result-
ing clusters is chosen, and the process of generalizing to cover the remaining objects
is repeated, until the system stabilizes on a particular set of seeds. Finally, each of
the clustered sets of objects is characterized, producing a description for each cluster.
The entire method is repeated for different numbers of seed objects (where N ranges
from 2 to about 7), and the best clustering, according to the criteria for judging the
descriptions, is used to add branches to the tree which will embody the classification.
The process is then applied recursively (and separately) to each of the resulting
clusters until no additional progress is made by further subdivisions.

17

A simpler conceptual clustering system, RUMMAGE (Fisher, 1984), is model
driven and uses knowledge of attributes to divide objects into groups. The attribute
that divides the objects so that their resulting characterizations are the best is used
to form the branches of the tree at each point.

Conceptual clustering involves three levels of search, the search for clusters
of objects, the search for characterizations of clusters, and the search for hierarchies
of the clusters. Our clustering program uses a model-driven approach to find the
clusters of objects and, like RUMMAGE, uses the attributes individually to specify
branches at each point in the hierarchy. However, it is simpler than RUMMAGE
since it uses as its criteria of quality the aim of minimizing the total number of
nodes in the tree. This is not an exact match to value for a classification tree, since
number of nodes is not coextensive with ease of access, or even with minimum
number of tests to make a decision using the tree. However, it does provide an initial
cut for clustering objects in a new domain. Additional work on conceptual clustering
is described by Fisher and Langley (1985 and 1986), and an incremental conceptual
clustering is introduced in COBWEB (Fisher, 1986).

CHUNKING

Chunks were originally proposed to explain short-term memory phenomena
(Miller, 1956). The term "chunk" refers to a familiar pattern that can be easily
remembered and manipulated as a single entity. Chunks figure in cognitive psychol-
ogy to account for the differences between novices and experts. They may be either
perceptual in nature or action-oriented and can involve either spatial or sequential
action structures. Most of the chunks appearing in Al involve sequential action
structures.

In SOAR (Laird, Rosenbloom, and Newell, 1986), an architecture has been
built for problem solving and learning by chunking. In the context of a means-ends
analysis framework, the architecture creates subgoals as difficulties are encountered.
The subgoal then creates a chunk stated as a production rule which allows it to
bypass the need to generate and achieve that subgoal in the future.

The rule created by SOAR includes in the conditions for the rule all memory
elements that were present when the subgoal was created which were subsequently
matched during the processing of that subgoal. It includes on the action side of the
rule all memory elements constructed during the processing of the subgoal which can
be reached from the subgoal by chaining through links. All nonterminal symbols are
replaced by variables, resulting in the formation of relatively general rules. SOAR
(foes not search through a space of possible rules. The problem solving progress
determines what rules are learned; learning is one-trial and automatic.

Chunking in SOAR leads to different effects depending on what difficulty is
resolved by the subgoal. When the subgoal is to determine what operator to apply,
SOAR learns heuristics; when the subgoal is to determine which state to select,
SOAR learns an evaluation function on the states; and when the subgoal is to apply a
complex operator, SOAR learns macro-operators represented as a set of rules. Differ-
ent forms of learning in SOAR arise not from different learning mechanisms, but
from variety in the problem solving process.

18

MACRO-OPERATORS

Machine-learning researchers have explored two approaches to improving
problem solving performance: learning heuristic conditions on operators to constrain
the search process, and defining higher- level operators which shortcut the steps
needed to traverse the problem space. The latter approach is called learning macro-
operators. Such "macros" can be represented either as a single data structure in
which a list of operators is specified, or as conditions on independent operators which
cause them to be applied in a certain order.

Problems which do not have nearly decomposable subgoals require the prob-
lem solver to temporarily violate goals which were achieved earlier. Macros can be
formed for some of these processes to allow the problem to be tackled in a new prob-
lem space in which intermediate steps can be ignored. For problems expressible in
terms of evaluation functions, macros can be seen as bypassing local valleys (or
peaks) in order to achieve a solution or a more robust solution. This approach to
learning is used and described by Neves and Anderson (1981), Korf (1982), Iba (1985),
and Anderson (1983, 1986).

HEURISTICS LEARNING

The task of learning search heuristics can be formalized as follows: GIVEN:
(1) an initial state from which to begin the search (for one or more problems); (2) a
set of operators for generating new states along with their legal conditions for appli-
cation; (3) a test to determine if the goal has been reached; and (4) a search strategy
for selecting operators and states, FIND: Heiristic conditions for each operator
which will reduce or eliminate search.

Methods for strategy learning can lead to improvement in which search is
reduced on practice problems during their so!utinn, or several varieties of transfer in
which search is reduced on new problems. The transfer may be to scaled-up prob-
lems, to problems with different initial and goal states of the same complexity, or to
problems also of the same complexity but with a differently structured state space for
which learning by analogy (Carbonell, 1986) may be appropriate.

Learning heuristics has been accomplished by learning from solution paths
(Langley, 1985). Once a solution path is found, credit and blame can be assigned to
instances of the application of rules. Each move along the solution path can be
marked as a positive instance of the rule that proposed it, and each move one step off
of the path can be marked as a negative instance of : y rule that proposed it. The
positive and negative instances can then be passed to some characterization method
to determine the heuristic conditions on each move-proposing rule.

Where it is not feasible to wait for a solution to begin the process of learning
heuristics to constrain search, moves can be classified as undesirable during the
search for solutions by noting loops, flagging dead ends, detecting illegal states or
moves, noting failure to progress towards a goal, or detecting less redundant or
shorter paths, as in the Universal Puzzle Learner (UPL) system (Ohlsson, 1983).
Moves can also be classified as desirable if shorter and less redundant paths are
recognized, or identifiable progress towards goals is noted.

19

LEARNING EVALUATION FUNCTIONS

A method for selecting states for further expansion during problem solving
involves the construction of a numerical evaluation function to rank the states and,
thereby, control search. A checker-playing program (Samuel, 1959) chooses moves on
the basis of a linear evaluation function. The system experimentally introduced new
terms from a set of predefined features, adjusted the weights of existing terms, and
took note of the resulting effect on its playing ability.

In domains with numerical attributes, curve-fitting techniques can be used to
generate functions which predict known ratings of states in terms of sets of prede-
fined features, and the resulting functions can subsequently be used for directing the
search process. Although these techniques can be valuable for domains rich in con-
tinuous attributes, they are not very well suited to acquire heuristics which can only
be stated in symbolic terms. Such symbolic variables could be translated into a set of
dichotomies which have either zero or one as possible values, but some information is
lost pertaining to the constraints between specific values of the original nominal vari-
able, and the evaluation function may end up being rather awkward to construct.

THE COMPOSITION MECHANISM

Composition operates by collapsing multiple productions into a single produc-
tion which has the effect of executing the set of productions. For the productions to
be collapsible, they must not contain actions which consist of arbitrary Lisp func-
tions, that is, their actions sides must be transparent. Actions which delete or remove
elements can also cause difficulty, as can negated conditions. In early research it was
assumed that composition should occur whenever two rules were applied in sequence,
but Anderson (1983) evokes composition only when goals are achieved.

PROCEDURALIZATION

Proceduralization builds into the productions information which formerly had
to be retrieved from long-term memory. This process forms more specific variants of
rules which are used so that in subsequent accesses of those specific variants of the
rule, the domain-specific information retrieval step is bypassed and the match proc-
ess finds all of the necessary information in the interpretive production which was
constructed. In ACT (Anderson, 1983), the combination of composition and procedur-
alization has resulted in a robust learning system. Recently, Anderson (1986) has
attempted to explain how generalization and discrimination effects can emerge from
this combination.

GENETIC ALGORITHMS

Genetic algorithms are search algorithms based on the mechanics of natural
genetics. To apply genetic algorithms to the task of learning, John Holland (1986) of
the University of Michigan constructed a system consisting of three main elements:
(1) a rule and message system, (2) an apportionment of credit system; and (3) a
genetic algorithm.

20

Starting from a randomly generated state, the learning system learns string-
rules called classifiers which match strings called messages. Messages derive either
from previously activated classifiers or from environmental sensors. The effectiveness
of each classifier is evaluated, and new rules (classifiers) are created using the inno-
vative search mechanism of the genetic algorithm. The classifiers are then used to
guide the system's behavior in the environment. The environment impinges on the
system through its sensors, called detectors. This information is decoded to some
standard message format and the result is placed on a message list along with the
rest of the messages generated by the previous cycle. Messages on the message list
may activate classifiers, rules in the classifier store. Activated rules may send mes-
sages to the message list for the next cycle. In addition, certain messages may call for
external action through a number of action triggers called effectors. Thus, both inter-
nal and external data are used through the message system to guide behavior and the
state of the system for the next cycle.

The relative value of candidate rules is determined by the simulation of a
competitive service economy. The right to respond to relevant messages is given to
the classifier with the highest "bid". The payment of the "bid" is made to the classifi-
er which previously sent the message, the successful message sender. In this way, a
chain of middlemen is formed from "manufacturer" (source message) to message "con-
sumer" (environmental action and payofl). The competitive nature of the economy
insures that the good rules survive and the less valuable ones die off.

Messages and classifiers have a very simple representation in terms of
binary strings with a wildcard "#" value which matches either a "0" or a "1". Thus
the alphabet consists of {0,1,#}. String rules expressed in this form play the role of
chromosomes and provide the raw material for the generation of new string rules
constructed from a structured, yet randomized, exchange of information among
randomly mated pairs of rules.

A genetic algorithms approach can be applied to learning optimum parameter
settings for sensor and communication systems and is, in fact, the approach used in a
battle management systems control rule optimization project at the Naval Surface
Weapons Center in Dahlgren, VA (Kuchinski, 1985).

We reserved this approach for examination last, if expected progress did not
materialize from other approaches. We were reluctant to use it, not because it was
inapplicable to the domain, but because results from our other learning research
could contribute to cognitive theories of learning.

NEURAL MODELING AND CONNECTIONIST APPROACHES

Neural modeling and connectionist approaches to learning in complex domains
are very attractive since they do not require the kinds of preliminary analysis of the
domain necessary for other approaches. In this framework, knowledge is typically
represented in terms of weights on the links in a 'neural network'. Learning takes
place by making modifications to those weights. The approach makes very few
assumptions and, although it operates more slowly than other methods, is more
general. Speedup may occur since it has a straightforward adaptation to parallel

21

implementation. Indeed another name for these systems is parallel distributed proc-
essing (PDP) systems. In these systems, the representation and processing structure
are identical. Multiple representations are linked by local cooperation and competi-
tion. Learning and adaptability are fundamental primitives, and handling multiple
goals, multiple constraints, and conflicts is fundamental to the system.

These systems are extremely powerful and robust both for computations and
for representations. They are fault tolerant, and degrade gracefully at the peripheries
of their areas of competence. Solutions that meet the formal constraints on a solution

can be reached quickly, and solutions can be based on incomplete, ambiguous, error-
ful, and even contradictory data in both facts and goals. Knowledge is distributed
across processing elements, yet rule-governed behavior emerges in the absence of
rules. The starting state, plus goal conditions, transform the system into the end
state.

However, the end product of the learner is a system capable of generating
the desired behavior, not a set of rules or an explicit representation of what has been
learned. Thus, if we used this approach to learning control doctrine for sensor and
communication systems, we would have a system which, in some sense, learned the
doctrine, but we would have no way of knowing what that doctrine was except by
watching it being 'applied' by the system during operation. Consequently, for our
research, this approach was tabled.

Recent work in connectionist models of learning have been carried out by
Anderson and Hinton (1981), Kohonen, Oja, and Lehtio (1981), Barto (1985) with
his self-interested model, Rumelhart, Hinton, and Williams (1985) with their general-
ized delta rule, Fukushima (1982) with his "neocognitron," and Hampson and Volper
(1986). More needs to be done to improve the learning rate before the connectionist
framework will be applied routinely to complex problems. Steve Hampson of the
University of California, Irvine has recently employed conditional probabilites to cut
the learning rate by possibly a factor of 200 or more.

OTHER APPROACHES TO LEARNING

This report does not discuss classical estimation and control, supervised and
unsupervised Bayesian learning theory, learning logics (nonmonotonic and inductive
logics), pattern recognition, search theory, and optimization techniques. These prom-
ising areas of research were not included because our investigations were already so
broad.

22

L

A RADAR EXAMPLE

The radar situation used as an example in this report is a simplification of the
general problem described in Dillard (1986). The concepts involved and the descrip-
tion of a two-dimensional air radar case are listed below.

THE GENERAL PROBLEM

Environment

Track data (dymnamics, cross sections, ID's...)

Intelligence

Electronic countermeasures (ECM)

Reaction times

Terrain, Weather

Possible Variable Parameters

Next pointing angle(s)

Angular coverage (1 pencil beam, 1 fan beam, n simultaneous beam, or
a combination)

Per Beam

PRF (pulse repetition frequency)

Dwell time

Waveform/resolution

Frequency

Power

Number of looks per scan

Per-Beam Target Situations (One or more)

Default

No track is likely to continue in that beam on that scan, and
there are no indications from intelligence or electronic support
measures (ESM) that a target is likely to enter from that
direction.

23

Track continuation

A current track could continue in or enter that beam.

High speed

A target that could be in that beam is travelling at high speed.

Weak

Either small size or great distance is making the target that
could be in that beam have a weak signal strength.

Close range

The target is likely to be too close for the use of a high
resolution pulse.

Priority search

Intelligence, ESM, or other sensors have indicated a target

might be entering from that direction any time.

Two in one bin

There is a likelihood of at least two targets in the same range
bin in a given beam.

A TWO-DIMENSIONAL AIR RADAR EXAMPLE

Radar Description

Agile fan beam, 10-degree beamwidth

162-nmi instrumented range

300 pulses per second

Pulse duration = 100 gs (low resolution)

or 2 ,gs (high resolution)

Dwell time per beam = 0.1 second (30 pulses)

or 0.2 second (60 pulses)

Looks (beams) per beam position per scan = I or 2

24

.4

Example of a parameter setting rule

(Situation Conditions -> Parameter Setting)

Situation Conditions

Low-density target environment

For the beam in question:

Priority Search

Not a track continuation

Expected target is not high speed

Parameter Setting

Dwell time = 0.2 sec

Number of looks (per scan) = 2

SIMPLIFICATIONS

Initially limit environmental considerations to track data and to warnings of
potential targets.

Limit per-beam situations to just three categories:

Default

High speed

Other (All others are included here).

Assume all targets are radial, i.e., they remain in the same beam position.

Limit per-beam parameters to

Dwell time, with a choice of 0.1, 0.15 (an addition to the above
example), or 0.2 second,

Looks per scan, with a choice of I or 2 looks.

(Omit considerations of low- vs high-resolution pulse duration.)

25

Consider four target types

High-speed (1000 knots) weak targets [to be called Target_W]

High-speed (1000 knots) average-strength targets [to be called
TargetX]

Average-speed (400 knots) weak targets [to be called TargetY]

Average-speed (400 knots) average-strength targets [to be called
Target_Z]

(The term "weak" may be interpreted as conflating average-size targets

at maximum range and small targets at midrange.)

Performance measures

False-alarm-rate units

Target-acquisition units for each of the four types of targets above.

Track quality units again for each of the four types of targets above.

Omit consideration of

Average-expended energy

Target resolution

Blind range

Limit attention to Task A in which the goal is to learn the principles of
assigning values to the parameters, given the situation.

NOTATION

Appendix A describes this simplified problem in considerable detail. It
includes examples of the situation space, parameter selection strategies, the
parameter space, and component performance measures. A summary of the
notation used is given below.

Let na, nb, and nc denote the number of beam positions believed to have
situation a (default), situation b (high speed) and situation c (other), respectively.

Let al, bl, and cl denote the looks per scan to be used (next scan) in beams
having situations a, b, and c, respectively.

Let a2, b2, and c2 denote the dwell time to be used (next scan) in beams
having situations a, b, and c, respectively.

The simplest strategy calls for values of al, a2, bl, b2, cl, and c2 to be
selected for the next scan based on the current situation (na, nb, nc).

26

THE RULE LEARNING PROCESS

Sample Rules from the Performance Set

Most specific

If High-Speed & na = 35 & nb = 1

thenbl = 2 & b2 = 0.2.

If Default & na = 35 & nb = 1

then a2 = 0.1.

More general rules may also be added.

If High-Speed & na > 30

then bl = 2 & b2 = 0.2.

As long as we start with a set of rules which spans the space of possible
scenarios, we can start the learning process.

Input to the Learner:

At least two cases with associated details on

environment

sensor capabilities

parameters chosen

performance measures for that choice.

[History file of previous cases]

[Analytical relationships between variables for use in Explanation-Based
Learning techniques]

Output from the learner:

Possibly - changes in weights associated with rules in the
performance set

- additional rules to enter into the performance set
[removal of rules from the performance set]

27

Note: Removal of rules is not necessary from the point of view of
improving the performance of the parameters chosen, since
weights may be set so that a given no-longer-useful rule
will not be used, but removal may be desirable to improve
the efficiency with which rules are selected for execution
during processing.

Allows incremental learning

Any new case may be compared with all previous cases for modifying the
performance rule set.

28

EXPERIMENTS

Initially, a conceptual clustering program was written to address the learning
tasks of determining intermediate features of situations and parameters (Tasks C and
D). This program uses a model-driven method for constructing nodes and minimizes
the number of nodes in the clustering tree. It assumes that the variables provided for
describing the situations and parameters are relevant to the task of choosing appro-
priate parameters.

The PRISM production-system architecture builder was used to construct an
initial experimental performance production system for a two-dimensional agile-beam
radar. This system proposes parameter settings given the situation and environment.
Its behavior was to provide feedback to the learning system to begin the process of
learning optimum choices. However, the performance system was built using an
excessively complex model, and there was no assurance that the initial rules spanned
the space of possible scenarios. Simplifications in the initial model warranted recon-
struction of the performance system that was incorporated into this learning system.
The pieces of the system responsible for performance can be isolated easily because
they form separate production memories. The advantage of this integration with the
learning system is that learned productions may be immediately put to use in solving
problems.

The PRISM architucture builder was reimplemented to make it compatible
with the LOOPS objc -oriented language on the Xerox 1108. The intent was to
make it possible IV-- information housed in LOOPS hierarchies to be accessed by
learning systems built using the PRISM architecture builder. However, making the
two systems compatible resulted in a more complex syntax for PRISM. Additional
familiarity with PRISM revealed that the advantages of hierarchical storage could be
obtained within PRISM. Even for systems already implemented in LOOPS, transfer
of all the material into linked PRISM declarative memories would be superior to los-
ing PRISM's flexibility of associating numerical attributes to the elements in its
memories for use in selection processes.

Details for a PRISM-based production system learner were worked out. This
system consists of a set of rules for adding, modifying, and weighting rules in the
performance system. Defining separate production memories in PRISM allows us to
store performance productions in the best manner for functioning to set parameters,
while storing learning productions in the best manner for learning.

The first step in our learning approach (to the agile-radar problem) was to
investigate clustering, based on Task A. What follows is a description of a way of
implementing this approach. Figure 2 gives the context in which experiments were
made.

29

FAKE SIMULATOR PERFORMANCE MONITOR

Provides false-alarm rate. FAR formulal Do FAR units

Provides detections per cell detectosperCl .-forula2
for acquisition case and for (8 values/trial) I
track-quality case, for each -*<8 names>_-units
of targets W, X, Y. Z.I

Oveal measure

next-trialIsituation parameter performance
(na nb nc) values measures

LEARNING SYSTEM

dotie . Iteratono)odls

Terminolgy used in Figure 2 is as follows:

1 Trial: PFA value, (na nb nc) values, parameter selection

Parameter selection for simple strategy: (a.2 bi b2 ci c2) values

formulat: FAR units = 120 * exp(2 * (log FAR) - 2.1))

formula2: < > -units = 170 * exp(-3.52636 * detectionsper-cell)
if detectionsper-cell > 1, or

=8.55 * exp(-0.5365 * detectionsper_cell)
otherwise.

< targ W acquis, tart. X acqui.s, targ Y acquis targ Z acquis,
track_W qual, tracli7Xqual,1trackYf qual,' trc__qa

30

EXAMPLE: CLUSTERING, TASK A

- for simple strategy: (na nb nc -> al a2 bl b2 cl c2)

Before beginning experiments, the following procedure was devised:

(1) Start with an "average" situation, e.g., na = 28, nb = 3, nc
= 5.

(2) Select 4 parameter combinations for initial sampling, e.g.,
select some having the specified characteristics:

sl: All or most parameters maximized;

s2: All or most parameters minimized;

s3: Mixture of large and small; and

s4: Mixture of large and small, differing in at least two
parameters.

(3) Form all possible pairs of samples (parameter combinations
and performance): (sl s2), (sl s3), (sl s4), (s2 s3), (s2 s4), (s3
s4).

(4) Divide these into 4 classes (permute pair if needed):

(unsat, unsat) - unsatisfactory if a measure exceeds its
limit

(sat, unsat)

(sat, equiv sat)

(sat, better sat).

(5) Define a number of statements. For example:

STATEMENT TYPE POSSIBLE INSTANCES
(parameter = value} {a2 = .1} {a2 .15) {a2 .2}

Ibi = 1) {b'l =2)

fc2= .1}{c2 = .15} c2 = .2}

parameter product = value) {al*a2 = .1 .15) .21{bl*b2 = .1) .15 }.2 }.3) .41{ cl*c2 = .1) .15) .2) .3} .4)

{quantized scaprate = value} {qsr = 1 2) 31 41

(6 iet scan rate = a2*na + bl*b2*nb + cl*c2*nc for the
last statement type. The number of quantization levels is
arbitrary.

31

Form 4 classes, and weight the statement instances as shown:

CLASS ACTION

(unsat, unsat) Assign -1 to every statement that occurs in both.

(sat, unsat) Assign -1 to every statement that occurs only in
unsat. Assign + 1 to every statement that occurs only
in sat.}

(sat, equiv sat) Assign + 1 to every statement that occurs in both.

(sat, better sat) Assign + 1 to every statement that occurs only in
the better.

(7) Sum the scores. Statements with highest scores are best.
Statements with lowest scores are poorest.

(8) Form a candidate rule set for selecting parameter
combinations having good statements and no bad
statements (or the closest to this situation).

(9) Use these to select the next sample. Perform new
comparisons and weightings, refine the rules, and repeat
the process (several times, if needed).

(10) To build rules for another situation, begin with the above
rules modified by the initial knowledge:

Gradually decrease/increase al*a2 as na increases/decreases,

decrease/increase bl*b2 as nb increases/decreases,

decrease/increase c1*c2 as nc increases/decreases.

(11) Refine these rules by taking several samples using these
rules, then forming classes and weighting statements as
above.

This procedure was tried for five sets of four pairs, using the statement
type {parameter = value). The formulas in Appendix A were used to calculate the
performance measures, using a weighted sum for overall measure (the acquisition
measures received weight 0.25 since they tend to be much greater than track quality
measures). Track quality measures exceeding 100 and acquisition measures exceeding
125 were declared unsatisfactory. The results, using the scoring system above, were
in the ballpark of the optimum combination (already calculated) but were not entirely

32

satisfactory. A major problem was that most of the unsatisfactory cases had good
(low) overall measures, and the scoring system did not allow their values of overall
measure to be a factor. A second scoring system was devised that differed in that two
kinds of scores were summed - one based on overall measure and the other based on
the (unsat, unsat) and (sat, unsat) pairs (i.e., an (unsat, sat) pair was additionally
scored as a (sat, better unsat) when the unsat case had a lower overall measure. This
gave better results, but none of the experiments resulted in the optimum combina-
tion.

Other statement types were investigated. The overall measure versus scan
time was plotted for 16 parameter combinations, to see if scan time is a good indica-
tor of the overall measure. (Scan time can be estimated without running a lengthy
simulation, so would work well as an indicator if it correlates with performance.
The result was a jagged curve that tended to be highest (poorest) for low scan times
(corresponding to combinations with a2 = 0.1) and lowest (best) for medium scan
times (corresponding to combinations with a2 = 0.15). This was encouraging, since
the optimum combination includes a2 = 0.15, but the jagged behavior of the relation-
ship could lead the learning system astray if an unfortunate set of initial parameter
combinations is chosen. Figure A6 in Appendix A shows the graph of the overall
measure versus the scan time for a typical situation choice (na, nb, nc) = (28, 3 ,5)
and for various values of bl, b2, cl, and c2. Figure A5 illustrates performance meas-
ure values for parameters resulting in the minimum value of the overall measure, for
the same typical situation.

Several variations of this clustering method were examined, but none pro-
duced entirely satisfactory results. With continued investigation we could probably
find a set of statement types and scoring techniques that produce good results, but
this would not be consistent with our desire to build a learning system that requires
minimal initial knowledge.

33

FINDINGS AND ACCOMPLISHMENTS

SYSTEM STRUCTURE

After providing exact descriptions of the performance measures and complet-
ing the specification of an agile-beam radar problem, we completed the construction
of a production system for setting parameters for this simplified model of a radar
system. This time the system was built within the framework of a mor,3 complex
learning production system using the flexibility of the PRISM production system
architecture builder.

The representation to be learned was chosen to be a production system archi-
tecture because of its transparency to human users who may see the results as a
doctrine described in rules. The learned material is easily broken up into comprehen-
sible units (the individual rules) which can be separately analyzed and related to
goals. The modularity of rules also permitted incremental development within a
working (functioning) system.

PRISM was chosen as the architecture builder because it is capable of describ-
ing a very comprehensive space of interesting production system architectures.
PRISM facilitated experimentation with architectures for learning, and eliminated
some of the routine programming involved in implementing new production system
languages.

The full production system for learning is a cluster of production memories,
each with its own specialized task. Initially, a production memory called the INPUT-
SITUATION-PM accepts user input and initializes the declarative memories (short-
term memories) needed to process the description of the situation for the case that is
input. The format for user input is specified exactly in Appendix E in Backus-Naur
Form. No attempt was made to have user-friendly input or output formats at this
stage since we developers were the only users.

SYSTEM GOALS

The user has the option of specifying different goals depending on whether
the user wishes to merely find some solution to the parameter-setting problem
(GOAL SATISFYING), to find the optimum solution (GOAL OPTIMIZING), the
system to improve its ability to pick a near optimum setting on the first attempt
(GOAL LEARNING), or to obtain a detailed monitoring of every decision made in
the choice of parameters (GOAL MONITORING).

GOAL SATISFYING. When the goal is to satisfy the conditions on the prob-
lem, the most recently learned productions for setting parameters are applied to
the problem to return a single solution along with ten measures of its performance.
Two production memories are activated, SATISFYING-PM and PERFORMANCE-
CHECK-PM.

34

GOAL OPTIMIZING. When the goal is to obtain an optimum solution, a
series of such solutions are reported, with each subsequent one an improvement over
the previous on its overall performance measure. The initial solution in the series is
generated by activating the SATISFYING-PM and PERFORMANCE-CHECK-PM,
but subsequent trials are determined by using the TRY-ANYTHING-PM along with
those two long-term production memories. Productions for optimizing were origi-
nally housed in a separate memory, but efficiency considerations led us to incorporate
them in with the productions for checking on performance. Although only parameter
choices with improved performance are reported, all choices that are examined are
saved to be used during learning.

GOAL MONITORING. When the goal is to monitor, the system assumes an
optimum solution is desired and proceeds as in goal optimizing to produce a series of
solutions. The only difference between goal monitoring and goal optimizing is in what
the system reports. In goal monitoring, every decision and action along the path to
obtaining each solution is reported by outputting each production rule that fires
along with the situation in declarative memory that satisfied the conditions of the
rule. Thus, every detail of the considerations leading to the choices of parameter sets
is documented.

GOAL LEARNING. When the goal is to learn, parameter-setting cases are
compared pairwise, spans of equivalent values (equivalent from the point of view of
what parameters would be recommended) among the situation variables are deter-
mined, and new productions are generated that reflect observed relations among the
situation variables when certain choices of parameters have better performance meas-
ures. The productions for learning are housed in the LEARN-PM, although much of
the processing is accomplished in Interlisp since PRISM allows any arbitrary Lisp
program to interface to the structures in it. The newly generated productions are
added to the production memory for satisfying the constraints on a solution. Appendi-
ces F and G, respectively, contain the text of one of the learning programs and the log
of a session on the Xerox 1108 of user interaction with the program.

RESULTS AND CONCLUSIONS

The conceptual clustering system originally constructed for experimentation
for this project was not elaborated. The system uses a model-driven method for con-
structing nodes and minimizes the number of nodes in the clustering tree. However,
a minimal number of nodes in the tree is neither a sign of ease of access nor a sign of
there being a minimal number of tests for decisions made using the tree. Since addi-
tional research on conceptual clustering revealed far superior work in the area, minor
improvements in our own conceptual clustering system were not attempted.

Some alternative approaches under consideration were found to be inferior.
This included phrasing the performance system rules in terms of suggesting changes
to the current parameter choices, and decomposing the performance system into
separate subsystems for setting individual parameters.

35

Task B (learning to change parameter settings) was somewhat misguided, and
we abandoned it for the following reasons:

(1) Nothing is lost by a 2-by-2 case comparison for setting parameters in
terms of obtaining feedback to the learner.

(2) Unnecessary additional complexity for rules.

(3) Optimum (best) choices need not be near alterations of current choices.
(Best guesses are always the rational choice.)

(4) Agile-beam radar situation facilitates radical changes. (Radical change
may be an advantage for hostile elements attempting to second guess our trackings of
them.)

From the generate and test view of learning, our key insight was to build into
the generator as much of the test as possible. The learning subsystem constructs
additional productions to incorporate more and more of the constraints on solutions
or the known improvement in choices. Adding conditions in a given production,
places limitations on when the possible candidates will be considered as suitable
choices of parameters. This minimizes the search required to obtain good solutions.
Each check of a candidate solution requires an elaborate calculation of performance
measures, so transferring complexity to the productions is warranted. Eventually, the
subsystem that returns the first solution to satisfy the constraints on a solution will
do almost as well as the optimizing subsystem.

The development of the learning system was driven by experiment and exam-
ples. Boundaries on the applicability of the resulting system are a matter of human
judgment. Research is still needed to construct the basis for a coherent theory of
machine learning. A new field, computational learning theory, will contribute the
analytical foundations. In addition to providing new learning models, extensions of
existing models, and theoretical comparisons among learning models, the new field
will contribute general learnability and nonlearnability results in existing models and
upper and lower bounds on the required resources (time, space, number of examples).
Analyses of specific learning algorithms will reveal their convergence-rates, resource
requirements, noise sensitivity, stability, and robustness. We would like to direct
future efforts to this field.

36

REFERENCES

Anderson, JA, and G.E. Hinton. 1981. "Models of Information Processing in the
Brain." Hinton, G.E. and Anderson, J.A. (Eds.), Parallel Models of Associative
Memory. Lawrence Erlbaum Associates, Hillsdale, NJ.

Anderson. J.R. 1983. The Architecture of Cognition. Harvard University Press,
Cambridge, MA.

Anderson, J.R. 1986. "Knowledge Compilation: The General Learning Mechanism."
Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (Eds.), Machine Learning:
An Artificial Intelligence Approach, vol. 2. Morgan-Kaufmann, Los Altos, CA.

Barto, A.G. 1985. "Learning by Statistical Cooperation of Self-interested Neuron-Like
Computing Elements." Technical Report COINS 85-11 University of
Massachusetts, Amherst.

Brown, J.S. 1973. "Steps Toward Automatic Theory Formation," Proceedings of the
Third International Joint Conference on Artificial Intelligence, pp. 20-23.
Stanford, CA.

Carbonell, J.G. 1986. "Derivational Anology: A Theory of Reconstructive Problem
Solving and Expertise Acquisition." Michalski, R.S., Carbonell, J.G., and
Mitchell, T.M. (Eds.), Machine Learning. An Artificial Intelligence Approach,
vol. 2. Morgan-Kaufmann, Los Altos, CA.

DeJong, G. and R. Mooney. 1986. "Explanation-Based Learning:. An Alternative
View," Machine Learning, vol. 1, no. 2, pp. 145-176.

Dietterich, T.G. and R.S. Michalski. 1983. "A Comparative Review of Selected
Methods for Learning From Examples." Michalski, R.S., Carbonell, J.G., and
Mitchell, T.M. (Eds.), Machine Learning- An Artificial Intelligence Approach.
Tioga Press, Palo Alto, CA.

Dillard, R.A. December, 1986. Machine Self-teaching for Parameter Optimization.
NOSC Document 1039. Naval Ocean Systems Center, San Diego, CA.

Falkenhainer, B. 1985. "Proportionality Graphs, Units Analysis, and Domain
Contraints: Improving the Power and Efficiency of the Scientific Discovery
Process," Proceedings of the Ninth International Joint Conference on Artifi-
cial Intelligence, pp. 552-554, University of California, Los Angeles.

Fisher, D. 1984. A Hierarchical Conceptual Clustering Algorithm. Technical Report,
Department of Information and Computer Science, University of California,
Irvine.

Fisher, D. and P. Langley. 1985. "Approaches to Conceptual Clustering," Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, pp.
691-697, University of California, Los Angeles.

Fisher, D. 1986. The Acquisition and Recognition of Basic Level Concepts.
Technical Report, Department of Information and Computer Science,

University of California, Irvine.

37

Fisher, D. and P. Langley. 1986. "Methods of Conceptual Clustering and Their
Relation to Numerical Taxonomy." Gale, W. (Ed.), Artificial Intelligence
and Statistics.

Forgy, C.L. 1979. On the Efficient Implementation of Production Systems. Ph.D.
Diss., Department of Computer Science, Carnegie-Mellon U., Pittsburgh, PA.

Fukushima, K. and S. Miyake. 1982. "Neocognitron: A New Algorithm for
Pattern Recognition Tolerant of Deformations and Shifts of Position,"
Pattern Recognition vol. 15, no. 6, pp. 455-469.

Gluck, M. and J. Corter. 1985. "Information, Uncertainty, and the Utility of Catego-
ries," Proceedings of the Seventh Annual Conference of the Cognitive Science
Society, pp. 283-287.

Hampson, S.E. and D.J. Volper (in press). "Linear Function Neurons: Structure and
Training," Biological Cybernetics.

Holland, J.H. 1986. Escaping Brittleness: The Possibilities of General-Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems. Michalski,
R.S., Carbonell, J.G., and Mitchell, T.M. (Eds.), Machine Learning- An
Artificial Intelligence Approach, vol. 2. Morgan-Kaufmann, Los Altos, CA

Iba, G. 1985. "Learning by Discovering Macros in Puzzle Solving," Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, pp. 640-642.

Kohonen, T., E. Oja, and P. Lehtio. 1981. "Storage and Processing of Information in
Distributed Associative Memory Systems." Hinton, G.E. and Anderson, J.A.
(Eds.), Parallel Models of Associative Memory. Lawrence Erlbaum Associates,
Hillsdale, NJ

Korf, R.E. 1982. "A Program That Learns to Solve Rubik's Cube," Proceedings of the
National Conference on Artificial Intelligence, pp.164-167.

Kuchinski, M.J. 1985. Battle Management Systems Control Rule Optimization
Using Artificial Intelligence. NSWC/MP-84-329 SBI-AD-F350 047, Naval
Surface Weapons Center, Dahlgren, VA.

Laird, J.E., P.S. Rosenbloom, and A. Newell. 1986 "SOAR: The Anatomy of a
General Learning Mechanism," Machine Learning, vol. 1, no. 1, pp. 11-46.

Langley, P., G.L. Bradshaw, and H.A. Simon. 1983. "Rediscovering Chemistry With
the BACON System." Michalski, R.S., Carbonell, J.G., and Mitchell, T.M.
(Eds.), Machine Learning: An Artificial Intelligence Approach. Tioga Press,
Palo Alto, CA

Langley, P. 1985. "Learning to Search: From Weak Methods to Domain-Specific Heu-
ristics," Cognitive Science, vol. 9, pp. 217-260.

Langley, P., J. Zytkow, H.A. Simon, and G.L. Bradshaw. 1986. "The Search for
Regularity: Four Aspects of Scientific Discovery." Michalski, R.S., Carbonell,
J.G., and Mitchell, T.M. (Eds.), Machine Learning- An Artificial Intelligence
Approach, vol. 2. Morgan-Kaufmann, Los Altos, CA.

38

Lenat, D.B. 1977. "Automated Theory Formation in Mathematics," Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, pp. 833-842,
Cambridge, MA.

Michalski, R.S. and R. Stepp. 1983. "Learning from Observation: Conceptual Cluster-
ing.- Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (Eds.), Machine
Learning. An Artificial Intelligence Approach. Tioga Press, Palo Alto, CA.

Miller, G. 1956. "The Magic Number Seven, Plus Or Minus Two: Some Limits On
Our Capacity for Processing Information," Psychological Review, 63,
pp. 81-97.

Minsky, M. 1967. Computation: Finite and Infinite Machines, Prentice Hall,
Englewood Cliffs, NJ.

Mitchell, T.M. 1977. "Version Spaces: A Candidate Elimination Approach to Rule
Learning," Proceedings of the Fifth International Joint Conference on Artifi-
cial Intelligence, pp. 305-310, Cambridge, MA.

Mitchell, T.M. 1982. "Generalization as Search," Artificial Intelligence, 18, pp.
203-226.

Mitchell, T.M., P. Utgoff, and R.B. Banerji. 1983. "Learning Problem Solving Heu-
ristics by Experimentation." Michalski, R.S., Carbonell, J.G., and Mitchell,
T.M. (Eds.), Machine Learning. An Artificial Intelligence Approach. Tioga
Press, Palo Alto, CA.

Mitchell, T.M., R.M. Keller, and S.T. Kedar-Cabelli. 1986. "Explanation-Based
Generalization: A Unifying View," Machine Learning 1, pp 47-80.

Neves, D.M., and J.R. Anderson. 1981. "Knowledge Compilation: Mechanisms for the
Automatization of Cognitive Skills." Anderson, J.R. (Ed.), Cognitive Skills
and Their Acquisition, Lawrence Erlbaum Associates, Hillsdale, NJ.

OhIsson, S. 1983. "A Constrained Mechanism for Procedure Learning," Proceedings of
the Eighth International Joint Conference on Artificial Intelligence,
pp. 426-428, Karlsruhe, Germany.

Ohlsson, S. and P. Langley. 1986. PRISM Tutorial and Manual. Department of
Information and Computer Science, University of California, Irvine.

Quinlan, J.R. 1983. "Learning Efficient Classification Procedures and their Applica-
tion to Chess End Games." Michalski, R.S., Carbonell, J.G., and Mitchell,
T.M. (Eds.), Machine Learning- An Artificial Intelligence Approach. Tioga
Press, Palo Alto, CA.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams. 1985. Learning Internal Repre-
sentations by Error Propogation. Technical Report 8506, Institute of Cognitive
Science, University of California, San Diego.

Samuel, A.L. 1959. "Some studies in Machine Learning Using the Game of Checkers,"
IBM Journal of Research and Development, 3, pp. 210-229.

Silver, B. 1986. Meta-Level Inference. Elsevier Science Publishing Co., New York,
NY.

39

Simon, HA and G. Lea. 1974. "Problem Solving and Induction: A Unified View."
Gregg, L.W. (Ed.), Knowledge and Cognition. Lawrence Erlbaum, Potomac,MD.

Utgoff, P.E. 1984. Shift of Bias for Inductive Concept Learning. PhD. Diss., Rutgers
University, Brunswick, NJ.

Vere, S. 1980. "Multilevel Counterfactuals for Generalizations of Relational Concepts
and Productions," Artificial Intelligence, 14, pp.138-164.

Winston, P.H. 1975. "Learning Structural Descriptions from Examples." Winston,
P.H. (Ed.), The Psychology of Computer Vision. McGraw-Hill, New York,

40

GLOSSARY

Analogical inference: Mapping information from a known entity (event, object,
process, situation) to a similar one that is not so well known.

Attribute: A variable or one-argument descriptor used to characterize an object,
event, entity, or process. Example: scan rate for a radar.

Causal analysis: Tracing the probable causes of observed events (occasionally used in
credit assignment).

Characteristic description: A concept description that states properties characterizing
all instances of a given concept or class.

Characterization: A description that identifies the attributes of members of a given
class or instances of a concept.

Chunking Grouping lower-level descriptions (patterns, operators, goals) into
higher-level descriptions.

Composition: Assembling a sequence of production rules or operators into a single
rule or operator.

Concept acquisition: Learning from examples.

Concept description: A symbolic data structure defining a concept describing all
known instances of the concept.

Concept formation: A form of learning in which the learner generates concepts useful
in characterizing a given collection of objects or facts or a subset of them.

Conceptual clustering A form of learning from observation concerned with arrang-
ing entities (objects, events, situations, facts, processes, etc.) into classes
characterized by simple descriptive concepts rather than into classes defined
solely by a predefined measure of similarity among their members, as in
conventional clustering.

Conditions: Left sides of production rules to be matched to representations of
situations in working memory.

Constraint: A property or relation that restricts the space of possible solutions to a
problem.

Constructive induction: An inductive learning process that generates new descriptors
not provided in the description of initial facts or observations.

Credit (blame) assignment: Identifying the steps (decisions, operators, etc.) chiefly
responsible for a success (failure) in the overall process of achieving a goal.

Derivational analogy: A case-based problem solving method in which derivations
of solutions to similar problems are replayed and modified to solve new
problems.

Description: A symbolic data structure defining a concept describing all known
instances of the concept.

41

Descriptor: An attribute, function, (n-ary) relation, or predicate used as an elemen-
tary concept for describing entities (objects, events, situations, processes, etc.).

Discriminant description: A concept description that identifies properties that
distinguish the given concept from other concepts under consideration.

Discrimination: Any method for moving from more general to more specific descrip-
tions, that is, a method for systematically searching the space of descriptions
in a general-to-specific manner (the opposite of "generalization," second
meaning).

Domain of a descriptor: The set of admissible values that a descriptor may take as a
component of a concept description.

Explanation-based generalization: A method that uses domain knowledge that
explains a given example as constraints on the construction of descriptive
concepts that characterize that example.

Extentionally identify: Specify (all of) the instances (of a concept or term).

Feature: A variable or one-argument descriptor (an attribute) used to characterize an
object, event, entity, or process.

Generalization:

(1) Any method for generating some rule or concept description from a set of
instances. (A relation between inputs and outputs of a learning system -
all learning systems carry out generalization in this sense of the term,
even if they move from general to more specific descriptions.)

(2) Any method for moving from more specific descriptions to more general
descriptions, that is, a process for systematically searching the space of
descriptions in a specific-to-general manner (usually in response to new
positive instances that were not matched by an earlier description). (This
is the sense in which I use the term, except where it appears as part of a
term in current use such as explanation-based generalization.)

Heuristics: Imperfect but useful pieces of knowledge employed in reasoning and

problem-solving tasks.

Heuristic search: A problem-solving method for finding a sequence of operators
that transforms an initial state into a desired goal state. Search strategies
used to generate, test, and prune operator sequences. Intensional definition:
Characterization.

Intensionally identify: Characterize.

Intermediate measures (intermediate features of conditions or parameters): Compos-
ite (macro) characteristics constructed of elementary or primitive attributes
that combine to improve the "grain-size" of reasoning in the domain.

Instantiation: Specifying values to fill in the slots in a schematic concept.

Knowledge compilation: Translating knowledge from a declarative form that cannot
be used directly into an effective procedural form.

42

Machine learning- A subdomain of artificial intelligence concerned with developing
computational models of learning, that is, systems that improve over time.

Macro-operator: An operator composed of a sequence of more primitive operators.
Appropriate macro-operators simplify problem solving by allowing larger
steps to be taken towards a solution and reducing search.

Means-ends analysis: A problem-solving method that searches at each step for opera-
tors that maximally reduce the differences between the current state and a
known goal state.

Metalevel inference: A technique in which control information expressed declara-
tively (usually in the form of explicit rules) is separated from factual informa-
tion in order to form a metalevel. Inference at the metalevel induces inference
at the object-level. Search at the object-level is replaced by search at the
metalevel. (See Silver, 1986.)

Neural network. A network of neuron-like elements that performs some simple logi-
cal function, typically a logic threshold function (LTF) or a sigmoidal function.
Minsky (1967) showed that networks of LTFs possess the computational
power of a Turing machine.

Operationalization: Knowledge compilation.

Parameter: An independent variable whose value contributes to determining the
functioning of a system (in this case a sensor or communication system).

Precondition analysis: A method principally for learning problem-solving strategies
from worked examples, combining metalevel inference with concepts from the
field of planning.

Predicate: A statement that is either true or false.

Proceduralization: The conversion of declarative information into procedural form.

Production rule: A condition-action pair,. stating that the action is to be performed if
the condition is matched or satisfied.

Proportionality graphs: An undirected graph in which nodes represent variables
and edges represent the existence of either a direct or inverse qualitatively
proportionality relation between the two variables.

Schema: A symbolic structure that can be filled in by specific information (instan-
tiated) to create an instance of the generic concept represented by the
structure.

Specialization: Any method for moving from more general to more specific descrip-
tions, that is, a method for systematically searching the space of descriptions
in a general-to-specific manner. (The opposite of "generalization" in its
second meaning)

Structural description: A symbolic representation of objects and concepts based on
descriptions of their parts and the relationships among them.

43

Transformational analogy: A problem-solving method in which a solution to a similar
problem is incrementally modified into a solution to the new problem.

Units analysis: A technique that imposes constraints on the construction of new
terms from old to assure that the new terms can have some reasonable inter-
pretation. Example: meters may be divided by seconds but not added to sec-
onds. (If one variable has as its units the power of that of another, they may
be added once the second is raised to that power.)

Version space: A set of candidate concept descriptions that are consistent with the
training data, the knowledge, and the assumptions of the concept learner. This
set defines a partially learned concept and can be represented by its maximally
general and maximally specific members.

Weak methods: General methods for problem solving applicable in the absence of
specific knowledge of the problem domain. Examples: means-ends analysis
and heuristic search.

44

APPENDIX A

A Two-Dimensional Air Radar Example

A-1

A TWO-DIMENSIONAL AIR RADAR EXAMPLE

A simplified version of the example given in Dillard (1986) for a two-
dimensional air-search radar is described here. The simplifications are the
following. (1) the pulse duration is 10 ;sec instead of a choice between 2 Asec
and 100 gsec, and (2) only three per-beam-position target situations ar' eonsid -red
rather than the six described there. Besides these changes, an additional value of
dwell time (0.15 sec) is allowed. The pertinent specifications of this radar are:

9 agile fan beam, 10-degree beamwidth

* 10 Asec pulse duration

e 162 nmi instrumented range

e 300 pulses per sec

e dwell time per beam = 0.10 sec (30 pulses), 0.15 sec (45 pulses),
or 0.20 sec (60 pulses)

e looks (beams) per beam position per scan = 1 or 2

A scan is completed when each beam position has had at least one look. Since the
antenna scans 360 degrees with a 10-degree beamwidth, the total number of beam
positions is 36. The range resolution corresponding to a 10 Isec pulse is 0.8094 nmi,
resulting in about 200 range-resolution cells per beam.

SITUATION PER BEAM POSITION

In each of the 36 beam positions, one of three possible situations can occur.

Situation a: DEFAULT. No track is likely to continue in that beam, and there is no
indication from intelligence or electronic support measures (ESM) that
a target is likely to enter from that direction.

Situation b: HIGH SPEED. A target that could be in that beam is travelling at high
speed.

Situation c: OTHER. At least one target is believed to be in that beam (but not a
high-speed target) and/or intelligence from other sensors indicate a
target might be entering from that direction at any time. A

SITUATION PER SCAN

Recall that a scan is a sequence of looks (beam pointings) such that each beam
direction receives at least one look. On any given scan, let

na = number of beam positions believed to have situation a,

nb = number of beam positions believed to have situation b,

and

nc = number of beam positions believed to have situation c.

A-2

rS

Since there are 36 beam positions, the sum of these numbers is 36, i.e., na + nb + nc
= 36. Figure Al shows the possible situations that can occur on any given scan.

Based on the values of na, nb, and nc, values of the variable parameters are

selected for the next scan. Since there are 36 beam positions, the number of possible

situations is 37*38"/2 = 703. Most of these are unlikely to occur, so can be
disregarded.

no. of DEFAULT no. of HIGH-SPEED no. of OTHER
beam positions beam positions beam positions

(na) (nb) (nc)

36 0 0
35 0 1 I
34 0 2 I* I

> 37 combinations* I
0 0 36 /

35 1 0
34 1 1 I

> 36 combinations* I

0 1 35 /

34 2 0 * I
> 35 combinations

* I
0 2 34 /

1 35 0 2 combinations

0 35 1

0 36 0 1 combination

Figure Al. Situation space.

A-3
A

PARAMETER SELECTION STRATEGIES

During each scan, the two parameters that can be varied for each beam
position are (1) the number of looks (beams) in that direction during that scan,
and (2) the dwell-time per look. The simplest strategy would map the situation
(na nb nc) into a selection of values of the parameters al a2 bl b2 cl c2, shown
in the chart below.

per-beam-position parameter

beam situation looksper scan dwell-time (seconds)

a al = 1 a2 = 0.1, 0.15, or 0.2

b bl = 1 or 2 b2 = 0.1, 0.15, or 0.2

c cl = 1 or 2 c2 = 0.1, 0.15, or 0.2

Figure A2 gives the reasonable combinations of parameter values that can be
chosen under this strategy. The goal is to determine the current target situation
(i.e., determine for each beam position if the situation is a, b, or c) and to use the
best parameter combination for that situation (i.e., to use the best mapping of the
form: na nb nc -> al a2 bl b2 cl c2).

A serious problem with this simple strategy is that weak (long-range or small)
targets can have a very low probability of initial detection. A better strategy
may be to alternate the value of dwelltime, (e.g., alternate it between 0.1 sec
and 0.2 sec in those beam positions which would, otherwise, continuously have
a 0.1 sec dwell time). There are various ways of specifying rules for varying dwell
time. We arbitrarily chose the following as an example.

A-4

The simplest strategy (dwell time not alternated) calls for values of a2, bl, b2,
ci, and c2 to be selected for the next scan, based on the current situation (na, nb, nc).
Out of 108 possible combinations, all but the 42 listed here are eliminated by bias
constraints b2 >f= a2, c2 > a2, bl >f= cl.

DEFAULT HIGH-SPEED OTHER
looks dwell time looks dwell time looks dwell time

al a2 bl b2 cl c2
1 .1 1 .1 1 .1
1 .1 1 .1 1 .15
1 .1 1 .1 1 .2
1 .1 1 .15 1 .1
1 .1 1 .15 1 .15
1 .1 1 .15 1 .2
1 .1 1 .2 1 .1
1 .1 1 .2 1 .15
1 .1 1 .2 1 .2
1 .1 2 .1 1 .1
1 .1 2 .1 1 .15
1 .1 2 .1 1 .2
1 .1 2 .15 1 .1
1 .1 2 .15 1 .15
1 .1 2 .15 1 .2
1 .1 2 .2 1 .1
1 .1 2 .2 1 .15
1 .1 2 .2 1 .2
1 .1 2 .1 2 .1
1 .1 2 .1 2 .15
1 .1 2 .1 2 .2
1 .1 2 .15 2 .1
1 .1 2 .15 2 .15
1 .1 2 .15 2 .2
1 .1 2 .2 2 .1
1 .1 2 .2 2 .15
1 .1 2 .2 2 .2
1 .15 1 .15 1 .15
1 .15 1 .15 1 .2
1 .15 1 .2 1 .15
1 .15 1 .2 1 .2
1 .15 2 .15 1 .15
1 .15 2 .15 1 .2
1 .15 2 .2 1 .15
1 .15 2 .2 1 .2
1 .15 2 .15 2 .15
1 .15 2 .15 2 .2
1 .15 2 .2 2 .15
1 .15 2 .2 2 .2
1 .2 1 .2 1 .2
1 .2 2 .2 1 .2
1 .2 2 .2 2 .2

Figure A2. Parameter space.

A-5

Dwell-time alternation rule: Every default (situation a) beam position which
has had a 0.1-sec dwell time for the previous da-1 scans will have a 0.2-sec dwell
time on the next scan. Every default beam position will have a 0.2-sec scan on at
least 1 of every da scans. Similarly, every beam position with situation b (high speed)
will have a 0.2-sec scan on at least 1 of every db scans and every beam position with
situation c will have a 0.2-sec scan at least 1 of every dc scans.

The mapping for this rule is (na nb nc) - > (al da bl db cl dc). It may be
that db and dc are unity under this strategy.

A major problem is determining the current target situation. Rules are
needed for determining whether the situation in a beam position is a, b, or c. The
accuracy of the determination depends partly on the current strategy and associated
parameter values. An optimum strategy would also have adaptive rules for acquiring
and tracking weak targets. These rules could also be refined with learning techni-
ques. Acquisition of a target conventionally requires two or more detections.
Reasonable rules can be specified arbitrarily, but learning procedures should be
applicable also to improving acquisition rules.

TARGET TYPES

Performance measures of target acquisition and track quality will be
calculated for four kinds of targets:

Target_W: high-speed, weak target

TargetX: high-speed, average-strength target

TargetY: average-speed, weak target

TargetZ: average-speed, average-strength target

A "weak target" could be an average-size aircraft at maximum range or a small
target at midrange. An "average-strength target" could be an average-size target at
midrange or a smaller/closer or larger/farther target. Arbitrarily, let "high speed" be
1000 knots and "average speed" be 400 knots. All are assumed to be radial targets;
i.e., they remain in a single-beam position, flying directly toward the radar.

FORMULAS

Let FAR denote the false-alarm rate (alarms per hour) and PFA denote the
probability of a false alarm per resolution-cell decision. For a constant FAR, the PFA
in beams having a 0.2-sec dwell should be twice as great as for a 0.1-sec dwell, and
should be 1.5 times as great for a 0.15-sec dwell. Since there are 200 resolution cells
per beam position, we have

FAR = 200 * 3600 (sec/hr) * PFA / 0.1 sec
= 7.2E6 * PFA

where PFA is the value of PFA for a 0.1-sec dwell time.

A-6

For the simplest strategy (dwell time value not alternated), the time to

complete one full scan (in seconds) is

scantime = a2*na + bl*b2*nb + cic**nc

Under the dwell-time alternation strategy, an approximation to the scan time is

scantime = 0.1 * [na + na/da + bl * (nb + nb/db) + cl * (nc + nc/dc)]

This approximation assumes that the dwell time alternates randomly among the
beams or is staggered, rather than, e.g., all default beams switching to the 0.2-sec
dwell on the same scan.

For any strategy, the minimum value of the scan time is 0.1 sec * 36 beam
positions = 3.6 sec, and the maximum value is 0.2 sec * 2 looks * 35 + 0.2 sec =
14.2 sec. (If all beam positions receive 2 looks, then the scan really becomes 2 scans,
by definition of a scan.)

The time that a radial target remains in any resolution cell is time-in cell =
rangeresolution / speed.

Since the range resolution is 0.8094 nmi, the value for a high-speed target is

time in cell = 0.8094 * 3600 1000 = 2.914 sec

and for an average speed target is

time in-cell = 0.8094 * 3600 /400 - 7.2846 sec.

The average number of looks at a target while it remains in a single resolution
cell is

looksper cell = looksper scan * time-in cell / scantime.

To compute the maximum value of looksper-cell, we assume an average-
speed target, a 0.1-sec dwell time in every beam position, and 2 looks in only that
one beam position, giving scan-time = 0.1 sec * (35 + 2) = 3.7 sec. The maximum
lookpercell is then 2 looks * (7.2846 sec/cell) / 3.7 sec = 3.94 looks. To compute
the minimum value of looksper cell, we assume a high-speed target that has not
yet been detected, with 2 looks in all beam positions except this one and a 0.2-sec
dwell time in all positions. The scantime is then 35 * (0.2 sec * 2 looks) + 0.2 sec =
14.2 sec, and the minimum looksper cell is (2.914 sec/bin) / (14.2 sec/scan) = 0.2052
looks. The value range of looksper cell is, therefore, roughly 0.2 to 4.0.

For the simple strategy, the average number of times a target will be detected
while in a single resolution cell is

detectionsper cell = looksper_cell * detection_probability.

A-7

The detection probability (per look) is a function of the false-alarm probability,
the dwell time, and the target strength. For a fixed value of PFA, the detection
probabilities need be computed (or read from a graph) for only six cases:

* 0.1-sec dwell, average strength

* 0.1-sec dwell, weak

* 0.15-sec dwell, average strength

* 0.15-sec dwell, weak

* 0.2-sec dwell, average strength

* 0.2-sec dwell, weak

For a false-alarm rate of 7.2 per hour (i.e., FAR = 7.2), the values of detection
probability for these six cases, respectively, are 0.6456, 0.1365, 0.9315, 0.38417,
0.9921, and 0.6443, assuming noncoherent integration and a nonfluctuating target
with a signal-to-noise ratio of 1 dB if average strength, and -1 dB if weak. (The
probability of a false alarm is PFA = 0.000001 for a 0.1 sec dwell, PFA = 0.0000015
for a 0.15 sec dwell, and PFA = 0.000002 for a 0.2 sec dwell.)

Figure A3 lists formulas for detections_per-cell for each target type, for
target acquisition, and track quality cases when using the simple strategy. Since
the acquisition performance measures assume that the situation in the beam prior
to detection of the target is situation a, the value of na used when computing track
quality measures is greater by unity than the value for acquisition measures and the
value of nb or nc is less by unity. (We assume that the situation in the other beams
remains stable.)

For the dwell-time alternation strategy, the average number of detections
per cell can be approximated by substituting for detectionprobability the quantity:
(Pd[0.2 sec dwell] + (d - 1) * Pd[0.1 sec dwell]) / d, where d is da, db, or dc for beam
situations a, b, or c, respectively.

PERFORMANCE MEASURES

The component performance measures will be:

" FAR-units

* targWacquis units, targX_acquis-units, targY_acquis -units,
targZ_acquis-units

" trackWqual_units, track_X_qual_units, trackYqual-units,
trackZ-qual_units

The measure FARunits is a function of the false-alarm rate. Acquisition measures
assume that the values of the parameters used in that beam (looksper scan and
dwelltime) are those for the default mode (al and a2 under the simple strategy).
Track quality measures assume that the parameter values used in that beam are
those for the high-speed mode if targetW or target_X, and those for the other mode
if targetY or target_Z. The target acquisition and track quality measures will be
functions of the average number of detections of that target in a resolution cell (i.e.,
detectionsper cell).

A-8

DETECTIONS PER CELL

Default Parameters Parameters Matched to Target
Target (for acquisition cases) (for track-quality cases)

W 2.914 * PdFa2. weak1 2.914 * bl * Pdfb2. weaki
(fast) scan-time scantime

X 2.914 * Pdfa2. avgl 2.914 * bi * Pdrb2. avgl
(fast) scan-time scan time

Y 7.285 * Pdra2, weaki 7.285 * cl * Pd[c2, weak1
scan-time scan time

Z 7.285 * Pdfa2. avg1 7.285 * cl * Pd[c2. av
scan time scan time

scan time = a2*na + bl*b2*nb + cl*c2*nc

Figure A3. Formulas for computing the values of detectionsper cell for each
target type, for the target acquisition case, and the track quality case. (Simple
strategy - dwell time not alternated.)

To minimize computations for initial experiments, a single formula can be
used for all target-acquisition and track-quality measures. We have devised the
following formula.

< >-units = 170 * exp(-3.52636 * detectionsper cell)
if detectionsper cell > 1

= 8.55 * exp(-0.5365 * detectionsper cell) otherwise.

Although the value of FAR-units is not important in our experiments (for
reasons discussed below), a formula that can be used is the following.

FAR-units = 120 * exp(2 * ((log FAR) - 2.1))

The overall performance measure (overallmeasure) can be the sum of the
component performance measures or a weighted sum. Since the acquisition measures
tend to be much greater than the track quality measures, these have been given
weight 0.25 in learning experiments.

COMPUTATIONS

A reasonable approach is to select a few values of FAR within a practical
range and use the learning system to determine the best set of control rules for each
one. (The same or very similar set of rules likely will result from all practical values
of FAR, so the result for one value could be a starting set of rules for the next.) The

A-9

performance for several values of FAR can then be compared in a final stage. The
operator often will prefer to set the false-alarm rate to a value considered
appropriate for the moment.

Sample values of track-quality performance measures for the single-target
case are given in figure A4, for the simple strategy. The false-alarm rate assumed for
this case is 7.2 alarms per hour. The acquisition measures for acquiring the
respective targets (while using default parameters in all 36 beam positions) have the
same values as the last set of track quality measures (the 1 look, 0.1-sec dwell case).
It is important to note, though, that the acquisition measures computed for a given
na, nb, and nc pertain to a new target of the respective type (in a beam position
having default parameters), and not to the acquisition of any targets currently being
tracked.

TARGET: W X Y Z
(na nb nc) = (35 10) (na nb nc) = (35 0 1)

TRACK QUALITY (0.963) (1.483) (2.407) (3.706)
2 looks
0.2-sec dwell 5.70 3.86 2.35 1.17
(3.9-sec scan)

TRACK QUALITY (0.215) (1.017) (0.538) (2.542)
2 looks
0.1-sec dwell 79.65 4.95 25.54 2.19
(3.7 sec scan)

TRACK QUALITY (0.507) (0.781) (1.269) (1.953)
1 looks
0.2-sec dwell 28.401 10.81 4.33 3.00
(3.7-sec scan)

TRACK QUALITY (0.110) (0.523) (0.276) (1.306)
I looks
0.2-sec dwell 115.14 26.92 64.18 4.24
(3.6-sec scan)

Figure A4. Values of detectionsper cell (in parentheses) and track
quality measure for the single target case, assuming the simple
strategy, a false alarm rate of 7.2 per hour, and a 0.1-sec dwell
In the default beams. (Recall that performance Is measured in units
of rejection, so a low value is good.)

A-1O

The situation (na, nb, nc) = (28, 5, 3) was chosen for most experiments. The
optimum set of parameters was found to be a2 = 0.15, bl = 2, b2 = 0.2, cl = 1, and
c2 - 0.2. Figure A5 gives a printer listing of component performance measures and
the overall measure.

Performance Measure Values for Parameters with Optimum Performance

(na nb nc) f 28 3 5
(a2 bl b2 cl c2) = 0.15 2.00 0.20 1.00 0.20

Scan time = 6.400001
W:det/cell (acq) = .2933578

X:detlcell (acq) = .4517155

Y:det/cell (acq) = .7306764

Z:det/cell (acq) = .1.129289
W:det/cell = .5867156

X:det/cell = .9034309

Y:det/cell = .7333945

Z:det/cell = .1.129289
FAR units = 9.996

Wacquunits = 60.41957 Wqual-units f 21.47367

X, acquunits = 34.56658 X_qual units = 7.028518
Y.acquunits = 12.92509 Yqual units = 12.80179
Zacquunits = 4.664908 Zqualunits = 4.664908

Overall_measure = 84.10893

Figure AS. Performance measure values for parameters resulting in the minimum
value of the overall measure, for the typical situation (na, nb, nc) = (28, 3, 5).

(Acquisition units are weighted by a factor of .25 for the overall measure.)

In the experiments involving clustering methods for task A, we examined the
relationship between the overall performance measure and the scan rate. This
relationship is illustrated in Figure A6 and is described under the section
"Experiments."

A-11

Overall Measure Versus Scan Time (for a typical situation)

@ SIGNIFIES UNSATISFACTORY

300

250 a= 01 a 2=0.15 - -- 02=0.2

200 -

wI
cc

150

IIS
0

100

50II

03 34 ,5 6 7 a 9

SCAN-TIME

Figure A6. Overall measure versus scan time for (na, nb, nc) = (28, 3, 5) and for various
values of a2, bl, b2, cl, and c2.

A-12

APPENDIX B

Preference Criteria for Hypotheses

B-1

. ------ -........

PREFERENCE CRITERIA FOR HYPOTHESES

Simplicity of hypotheses

of conditions

of features and concepts used

of actions or consequents.

Generality of hypotheses (more general hypotheses may be more economical as ways
to compress information, but more specific ones tend to be closer to the data
and do not go beyond it so recklessly).

Cost of using hypotheses for decisions

cost of detecting features

cost of establishing matches for the conditions (simplicity affects this)

number of tests

distribution of cases requiring multiple tests

(in a hierarchy of concepts which is organized to minimize the
number of nodes, there could be a distribution of the cases
which is less economical to process than if the concepts were
organized in some other way)

cost of conflict resolution between competing hypotheses.

Degree of approximation to the facts

proportion of times the hypothesis applies correctly to the

number of times it applies

vagueness of the hypothesis (in formats expressing numerical values

as mean and standard deviation, for example, a smaller standard
deviation is preferred to a larger)

precision of the prototype for concepts expressed as prototypes.

Interconnectivity to other hypotheses (using features which are common to a lot of
other hypotheses may be preferable to using entirely new features since there
will be a difference in what can be inferred).

Ease of determining what node an arbitrary case falls under.

B-2

APPENDIX C

Parameter Changes

C-1

PARAMETER CHANGES

How shall we describe changes in parameter settings? For the purpose of
generating rules, we would like to have as few variants on the operators as possible.
This poses a problem for the description of parameter changes because there are so
many ways to make alterations in the parameter settings. The grainsize of the
changes can be varied, not only within a metric (e.g., nominal, ordinal, interval, ratio,
absolute), but descriptions of parameters can be revised and converted between
metrics.

Operators for changing parameters could specify

I. Ordinal

large positive change

large negative change

no change

OR

large positive change

medium positive change

small positive change

no change

small negative change

medium negative change

large negative change

II. Metric (digital) units (These will have to be specific to a given parameter, based
on understanding of the domain)

a. one unit at a time (greater, no change, or less)

b. n units at a time (greater, no change, or less)

c. logarithmic (or other power, 2**n, log(n), etc.) scale units at a time
(greater, no change, or less).

The situation becomes all the more complex when multiple parameters are to
be changed simultaneously. We are imposing constraints on when that will be
considered to make the search tractable.

C-2

APPENDIX D

Terminating Conditions for the Learner

D-1

TERMINATING CONDITIONS FOR THE LEARNER

For a particular optimal parameter setting, the options are

a) Number of trials since the latest improvement,

b) Time of processing,

c) Exhausted the space of possibles to test, so we take the best found,

d) A preset performance goal within a certain epsilon distance,

e) A beam search of depth d revealing no improvements in performance, and

f) N seed conditions all having beam searches of depth d with no improvement.

For a complex multisensor system, a candidate goal recognizing rule could be:

IF you have radar rl,...,rn from which {ri} R have been selected, and for each ri
selected, parameters pil-pij are set, and for all performance measures each is
below the maximum value allowable, and the performance measures meet the
balance criterion

THEN you are finished.

When are we done learning parameter control doctrine? Probably never, but
signs that we may be done would include:

Relative strengths on heuristic rules stabilize

No new rule variants are generated

All expected scenarios have been represented by instances (cases) presented to
the learner.

D-2

APPENDIX E

Backus-Naur Form Specification of a
Language for Inputting the Description of

a Problem to the Learning Programs

E-1

BACKUS-NAUR FORM SPECIFICATION OF A LANGUAGE
FOR INPUTTING THE DESCRIPTION OF A PROBLEM TO

THE LEARNING PROGRAMS

<parameter-setting-task> - (<situation>) I
(< goal > < situation>)

<goal> (GOAL <type>)

<type> - SATISFYING I {returns the first set of parameters which meet the
constraints on a solution}

OPTIMIZING I {returns a series of sets of parameters, each with its
associated performance measures. The next set in the
series must be an improvement in performance over
the previous on the overall performance measure}

LEARNING I {returns a series of sets of parameters as in the
optimizing goal and subsequently improves both the
optimizing and the satisfying production memories}

MONITORING {returns details of the considerations leading to the the
choice of parameter sets}

< situation > = < na-nb-nc > I
< current-beam> I
<far> I
<far> <situation>]
<situation> <far> I
<current-beam> <situation> I
<situation> <current-beam> I
<na-nb-nc> <situation>]
< situation > < na-nb-nc >
< current-beam > = (CURRENT-BEAM < curr-beam>)

<curr-beam> = DEFAULT I
HIGH-SPEED]
< other >

<other> = OTHER

<far> ::= (FAR <decimal num>)

< na-nb-nc > = < num-for-na-nb-nc> I
< na-nb-nc > < num-for-na-nb-nc >

< num-for-na-nb-nc > = (na <num>)
(nb <num>)
(nc <num>

<num> ::= 36 I 35 I 34 1 33 1 32 I 31 1 30 1 29 I 28 1 27 I 26 1 25 1 24 1
23 122 121 1 20 1 191 181 171 161 151 141 131 12 11 I
10191 8171 61514 1312 11 10

E-2

APPENDIX F

Text of the Learning Program,
DISCRIM

F-1

TEXT OF THE LEARNING PROGRAM, DISCRIM

Listing of File (FLOPPY)DISCRIM ,3-Nov-87 12: 17: 18 by

(CREATE-COMPONENT CURRENT-CASE-WI
INSTANCE-OF DECLARATIYE-ME0IORY)

(CREATE-COMPONENT PREVIOUS-CASE-NM
INSTANCE-OF DECLARAT!VE-MEMORY)

(CREATE-COMPONENT CASE-WI
INSTANCE-OF DECLARATIVE-MEMORY)

(CREATE-COMPONENT THIS-CASE-WI
INSTANCE-OF DECLARATIVE-MEMORY)

(CREATE-COMPONENT BEST-PERFOR..ANCES-WN
INSTANCE-OF DECLARATIYE-MEMORY!

(CREATE-CO.PONENT TRIES-WI
INSTANCE-OF DEPXARATIVE-MEMO Y)

(CREATE-COMPONENT LEARN-WM
INSTANCE-OF DECLARAfl YE-MEMORY!

(CREATE-COMPONEUT CAWDIATE-RELATIONS-NM
INSTANCE-OF DEC.LARATIYE-MEMORY)

(CREATE-COMPONENT OLD-CASE-WI
INSTANCE-OF DECLARATIVE-MEnORY)

(CREATE-COMPONENT SAT ESFYIN6-PM
INSTANCE-OF PROCEDURAL-MEMORY
MA TCHES-AGA:NST TRIES-NM
DEFAULT-ACTIONS (($ADD-TO WAM ($RESULT))

(CREATE-COMPONENT PERFORMANCE-CHECK-PM
INSTANCE-OF PROCEDURAL-MEMORY
MATCHES-AGAINST WM
DEPAULT-ACTIONS ((SADD-TO 'AM WSESULT) ((I

(CREATE-COMPONENT TRY-ANYTHING-PM
INSTANCE-OF PROCEDURAL-MEMORY
MATCHES-AGANST TRIES-WI
DEFAULT-ACTIONS (($ADD-TO TRIEFS-NM (SRE3ULT1% (I

(CREATE-COMPONENT INPUT-SITUATION-PM
INSTANCE-OF PROCEDURAL-ME1ORY
MATCHES-AGAINST TRIES-NM
DEFAULT-ACT!ONS ((fADDI-TO 7RIE:S-AM 1SRE3ILT))

(CREATE-COMPONENT LEA.RNING-PM
INSTANCE-OF PROCEDURAL-ME1ORY
MATCFE3-AGAINST CURRENT-CAEE-NM
DEFAIULT-ACT!ON! (($ADD-TO L;ARN-AM($EJT1

(CREATE-^rNPGNEN'T LEARN-FROM-DIFFERENCES
!NSTINCE-OF DCiHTNPOES

F-2

(CREATE-COMPONENT LEARN-FROII-SINILARITIES
INSTANCE-OF 6EMERALIZATION-PROCESS)

(BUILD-IN INPUT-SITUATION-PM

(START-PROBLEM
((START))

(($CLEAR-fl W TRIES-N CURRENT-CASE-NM THIS-CASE-il BEST-PERFORMANCES-NH)
($ADD-TO TRIES-MR ($6ET-PROBLEM)(
($ADD-TO TRIES-IM (FIRST-TRY) CNOT-ALTERNATIYES-SET))
(SAND-TO MM (NOT-ELIMINATED) (NOT-CASE-STORED) (NOT-PERF-KNOWNf)

(SET-NONITORING-TO-OPTi ItE
((GOAL HONITORING))

(($DELE-TE-FROM TRIES-Wh (GOAL MONITORINS)
(SADD-TO TRIES-Nh (GOAL OPTIMIZ1N6))
($OMTRACE FULL)
CSPMTRACE FULL)))

(60-TO-SATISFY
((FIRST-TRY)!

(WsALL SAT!SFYIN6-PM)
($CONTINUE))l

(BUILD-IN SATISFYING-PI

(SINSLE-HIGH-SPEED-TARGET
l(N3U 1) (NC 9) WNM 1B! 4B1) 5B? =B2) (C! zC!)))

((SOELETE-FROI N (BI =B) (B2 =BV~ (Cl =C11)
($ADD-TO N (El 2) (B2 I."') (CI W)))

(FEW-GTHER-TAR6ETS
((NC =NC) (NB 1) (*SREAT;ER# =NC 8) (4GREATER* 4 =NCI (QWM VC =Cl) (C2(

)(SDELETE-FR34 WM (C 4C1! (C', zC^))
(SAD-O- WMH (C:f 2) (C7 6.2))))

(HIGH-SPEED-TARSET
((CURRENT-BEA) HIGH-SPEED))

((ODD-TO WMH 02 i.15) (Bf 2) (B52 1.2" (Cl 2 (C? .~:

)DEFAULT-S1'
i((CRRENT-BEAM DEFAULT))

(($ADD-TO WM 0A2 9.15) (31 2) (82 8.2) (Cl 11) (C2 0.2)

(OTHER-Sir
((CURRENT-BEAM OTHER))

F-3

(($ADD-TO W11 (A2 1.15) (81 2) (82 3.2) (CI 2) (C2 1.2))))

(F!NISHED-PICKINS-FIRST-PARAN-SET
((OWN (A2 4A2) (81 -81) (82 =821 (CI =CI) X2? cC2)))

t (($ADD-TO WM (FIRST-SET))
(SADD-TO TRIES-il (TRY 14A2 :81 :82 xCI zC2)))))

(ELIMINATE-TRIAL-HISH
((I (FIRST-SET) (A2 42?) (B2 :22) (46REATERi -A2 :92)S (B1 ZB1) (Cl =CI) (C2 :C2fl1
(($ADD-TO N (ELIMINATED))
($DELETE-FROM N (NOT-EUtMINATEDI)
($DELETE-FROM TRIES-Wf (TRY=AZ -B! :82 =C! zC2)))
(SADE!-TO TRIES-W)I (TRIED:A2 :81 :B2 =Cl :Cl))
($3ELETE-FROM WM (c2ST-SET))

(ELIMINATE-TRIAL-OTIER
(?94 (FIRST-SET 02.~ =A21 VC =C2) (fgSREAER4 =A2 =CV~

(91=B) (B2 z52) (Cl fi)

(($ADD-TO WM (ELIMINATED))
($DELETE-FRCM~ WM (NOT-ELIMINATED))

(~DLET-F~ONTRIES-WM (TRY=42 =81 =62 :Cl =C2f))
($ADD-TO TRIES-WM (TRIED:A2 4Bl :82 =Ct :C2))
($DELETE-FROM WM (FIRST-SE:T))

(ELIMINATE-TRIAL
((RWM (FIRST S:T) (8I :211 (Cl =Cl) ('GREATER' rC. 421)

(Ai 4A2) (22 422) (C2 =0f))

f((ADD-TO WM (ELIMINATED))
($DELETE-FROM WM (NOT-ELININATED))
($DELETE-FRO1. TRIES-WM (TRY:AZ =BI :82 :01 :0"2)))
(ADD-TO TR:ES-WM (TRIEDzA2 =81 =B2 =Ct :C2))
($DELE'T;.-FROl WM (FIRST-SET))))

(FIRST-SET-IN-SATISFYING
((BO"AL SATISFYING) (@WM (FIRST-SET))n

($CALL- PERFORMANCE-CHECK-PM)
(SCONTINJEH))

(FOR-3PTI,4I7!!NG-0R-MONITORING
()!WM (FIRST-SETH (EGAL OPTIMIZINGfl

(($ADD-To TRIES-WM t$InENTIFY-ALTERNA7:V;Bl'
(f*DEETE-FROM TRIES-Nil (NOT-ALTERNATIVES-SET))
($CALL PERFORMANCE-CHECK-PMi;
($CONTINUE)

(F2R-LEARN!!I3

(UADD-TO TRIE-c.M($N!-ATR TVE
)$DE'TE FRCV1 "FIE:-WM 0 LENAI~-~

F-4

(BUILD-IN PERFORMANCE-CHECK-PM

(CHECK-PERFORMANCE
((A2 42) (NOT-PERF-KNONN) (NOT-ELIMINATED)
(D1 :31) (B2 %81") (CI zCI) (C2 -C2)
(@TRIES-UM INA xNA) (TRY (4A2 =31 =82 %CI 4C2))

INS --NB) (NC zNC) (FAR =FAR)))

((0ADD-TO N? (SCALCULATE-PERFORMANCE zNA =NB =NC 472 =81 =82 %C1 42 =FAR))
($ADD-TO N (PERF-KNOWN))
(SDELETE-FROM NM (NOT-PERF-KNOWN)))

(STORE-CASE-FOR-LEARNIN6
(PERF-KNONN) (NOT-CASE-STORED)
(AZ 42) (BI :31) (B2 42) (Cl 4CI) (Cl 4C2)
(@TRI;S-N(NA zNA) (NB zNB (NC zNC) (CURRENT-BEAM zB))
(WACO =WACO) (XACD =XAC9! (YACQ =YAC9) (ZACQ =ZACO!
(NOA =)19A (XDA =XQA) CYEA =YQA) (Z9A =ZGA! (FARU =FARU) (OVAM =O'd.M()

(($40D-TO CASE-0M ((=NA =NB =NC =B) (42 =B! :82 :Cl 421
(=WACO =XACO =YAC2 zZACO zWQA =XIJ =YEA =ZG =FARU :OIVpMf))

($ADD-TO THIS- ASE-NM ((=NA =NB :NC =B) (472 =91 =B2 zC1 =C2)
(=WACO :IACO :YACQ =ZACG zNGA zXQA zYQA zZ9A :FARU CM:

'$ADD-TO CURREAT-CASE-NM (CONDITIONS (=NA zN =N =BF))
IDD-70 CURRENT-CAcSE-iM (SETTINGS (4A2 41 =92 =CI C0f))

4$ADD-1O CURREIT-CASE-NM (PERFORMANCES (=WACO =XACU =YACO =ZACO

($ADD-TO TRIES-WM (TRTED (4A2 =81 422 z! 4C21))
($DELETE-FROM TRIES-NM (TRY (4A2 =81 =32 zCI =0))f
($ADD-TO NM (CASE-STORED))
($DELETE-FROl NM (NOT-CASE-STORED))))

(PERFORMANCE-UJNACCEPTABLE
((CASE-STORED) (PERFORMANCE-BAD) (ITRlsES-WM (GOAL SATISFYINGf)

((sADD-TO WM (ELIMINATED))
(SOELETE-FROM N (PERFORMANCE-BAD) I
($DELETE-FROM NM (NOT-ELIMINATE)m

(DECDE-WHAT-CAN-BE-TR!EP
((EL!MINATED) (tTR!ES-WM (FIRST-TRY) (BOA:~ SATiSFYINS (AOT-ALTERIATIVES-3ET)l)

(($DELETE-FRO TRIES-NM (F'RST-TRYfl
($ADD-TO TRIES-NM CNOT-FIRST-TRY)
($ADD-TO TRIES-NM (SIDENVIFY-ALTERNATIVES))
($OELETE-FRCM TRIES-NM (MOT-ALTERNAT EVES-SET))

fREMwO'/E-.QET-TRIED9-rIRST
((ITFIES-N)1 (GOAL SATISFYING) (TRIED zPARAMS) (TRY zFARAME-))

((sOLETE-FRO1. TRIES-NMW (TRY zPARAMS)

F-5

(GET-NEW-TRIAL
((ELIMINATED)
(ITRIES-WH (TRY zPARANS) (NOT-FIRST-TRY))

(($CLEAR-DhI N)
($ADD-7D N (NOT-ELIMINATE3) (NOT-CASE-STORED) (NOT-PERF-KNONN))
($ADD-TO WK (S6ET-NEXT-TRY :PARAKS)l
($1DELETE-FRDN TRIES-Nfl (TRY =PARAMS))))

(F!NISHED-SATISFYIN6
((CASE-STORED) (PERFORMANCE-OK) (ITRIES-Wil (GOAL SATISFYING)))

(($WRITE '****HE PARAMETERS FIR: '
(SPRINT-FIRSTS TRIES-Nfl CURRENT-BEAN NA NS NC)
(SMRITE 0**ARE: 1)
($PRINT-FIRSTS WM A2 BI B2 Cl 02
($WR'TE *#*WITH PERFORIANCE VALUES: *
($PRINT-FIRSTS WM FARU WACO XAC9 YACO ZACO VGA XQA YGA ZGA OVAM)
($CLEAR-Dh 0M TRIES-VM)
(SADD-70 TRIES-NM (START))
($CALL INPUT-SITUATION-PMi)

t(CASE-STORED! (@TRIES-WH (GOAL OPTIMIZING))
(@TRIES-4M (FIRST-TRY)) (OVAM =OVAM))

((SIELETE-FROM TRIES-NM (FIRET-TRYI)
($ADD-TO TRIES-NM (NOT-FIRST-TRY))
(SrLEAR-Ofi BEST-?ERFORMANCES-WM)
($*ADD-TO BEST-PERFORMANCES-wM (OVAM =OVAM))
($4RITECR *I*4*THE PARAMETERS FOR: 0)
($PP.IN7-FIRSTS TRIES2-MM CURRENT-BEAM NA NB NC)
(SWRITECR *#*ARE: 1)
($PRINT-FIRSTS NM A2 B1 B2 CI C2)
($NRI7ECR m4NITH PERFORMANCE VALUES: 1)
(SPRINT-FIRSTS WK WACO XACG YACG ZACQ NOA XOA YRA ZEA FARU OVAM)
($CALL TRY-ANYT NING-PM)
($CONTINUE)

(CHECIK-FOR-OVERAL'L-BEST-SO-FAR
((CASE-STORED) (#TRIES-WM (GO4L OPTIMIZIN)
(qBE^ST-PERF-3R~lANCE5-WM (OVAM :GOV0Ml)
(OVAM =OVAM)
(*GREATER* zBOVA1 =OYAI1))

((3CL:EAR-DM BEST-PERFORKANCES-WM)
C 3D-~ E5T-PEFFmAC:S-WM (OVAM =OVAM))

($01RTECR *f4f'*THE ?A r-METERi F9R:
(tFRINT-FIRST: TRIci-N(4 CUWRNT-EAM NA NS NC
(14RITEIR "#*ARE: 1)
($'FiNT-FIRSTS X4l ,7 Bt B7 C! 1"2
IWRITECR 'fE4IT4 DEiFORMlANCE VALUES:

ftlSilNT- FIRSTS WM WACO XACQ YAC2 ZACO 4CA IGA Y9A IQA FARU 014AM)

F-6

(BUILD-IN TRY-ANYTHING-PN

(TRY-ANYTHING-NT-TRIED
W(RY vPARAMS))

(($CLEAR-DII INI)
(SA0j-TO MR (NOT-ELIMINATED) (HOT-CASE-STORED) CNOT-PERF-KNOWN)

($6ET-NEXT-TRY xPARANSI)
(SCALL PERFORPANCE-CHECK-PM)
($CONTINUE)))

(BUILD-IN LEARNING-PM

(COUNT-POINTS
((@CASE-UM (=PERF'SI! tPERPS2) (430T (*EQUAL :PERF31 :PER Kflfl

U$'SDD-TO LEARN-WM (SCOLUNT-PNIS (=PERFSI mPERFS^fl'))

(COMPARE-CASES
UIRELATION =REL BEST zPARANiETER.S))

(($BUILO-IN SATISFYING-PM
(=NEW-PROD-NAME ((-REL)) --> ((SADD-70 4M (zPARAMETERS)III!

(SOELETE-FROM LEARN-UN #Wf)

(ADO-TO TRIES-UK (START)
(CALL INPUT-SITUATION-PH)

(DEXPR GET-PROBLEM 0 (PROS (PROBLEM PROD RESULT GOAL CURRENT-BEAM NA NE NC FAR)
(PRINK 'TYPE A PROBLEM (OR 9 TO QUIT):
(SETO PROB (CAR (INPUT-LINEl))
(COND ((EQUAL PROS *G) (HALT) (RETURN NIL!))
(SETO GOAL 'SATISFYING)
(SETO CURRENT-BEAM 'DEFAULT)
(SETO NA '36)
(SETO NB 1)
(SENO XC 1)
(SENO FAR 7.21

LOOP (SETO ?ROSLEN ?ROB!
(COND ((EQ (CAAR PROBLEM) 'GOAL) (SETI 1,4L (CADAR PROBLEM))

((EQ VCAR PROBLEM) 'NA) (SETO NA (CADAR PROBLEM))!
((EO VCAR PROBLEM) W!~ (SETO NE (CADAR PROBLEW)
((EQ (CAAR PROBLEM; 'NC) (SENO NC (CADAR PPJGBLEM)))
((EQ VCAR PROBLEM) 'CURRENT-BEAM) (SETQ CURRENT-BEAM VCDAR PROSLEM)))
((EQ (CAAR PROBLEM) 'FAR) (SETO FAR (CADAR PROBLEM)
(T ((WRITECR 4im*ENTER PROBLEM IN SPECIFIED FORMAT~f#+f)

(PRINK 'TYPE A PROBLEM (OR 9 TO QUIT):)
(SETO PROB (CAR (INPUT-LINE)))
(COND U'EQUAL PROB 'V (HALT) (RETURN NIL!)) F-7
(SET9 GOAL '5ATIES:YING)

F-7

(SETg CURRENT-BEAM 'DEFAULT)
(SETO NA 36)
(SETg ND 1)
(SETO NC 1)
(SETO FAR 7.2)))

(SETO PROD (CDR PROBLEM))
(COND ((NOT (NULL PROD)) (60 LOOP))

(COND ((NOT (EDP (PLUS NA KB NC) 36))
((NRITECR '****THE SUM OF NA, NB, AND NC MUST BE 36J444')
(PRINK 'TYPE A PROBLEM (OR 9 TO QUIT):)
(SETO PROD (CAR (INPUT-LINE)))
(CON ((EQUAL PROS '9) (HALT) (RETURN NIL)))
(SETO 6AL 'SATISFYING)
(SETO CURRENT-BEAM 'DEFAULT)
(SETO NA 36)
(SETO NB 2)
(SETO NC 1)
(SETO FAR 7.2)

(6O LOOP)))

((NOT (OR (EQ GOAL 'SATISFYIN5)
(EQ GOAL 'OPTIMIZING)
(Eg GOAL 'LEARNING)
(EG 60AL 'MONITORIN6)

((WRITECR 'H4GOAL MUST BE SATISFYINS, OPTIMIZING, LEARNING, OR MONITORINS,*4')
(PRINK "TYPE A PROBLEM (OR 9 TO QUIT): 0)
(SETO PROB (CAR (INPUT-LINE)))
(COND ((EQUAL PROS ') (HALT) (RETURN NIL)))
(SETO GOAL 'SATISFYING)
(SETg CURRENT-BEAM 'DEFAULT)
(SET9 NA 36)
(SETO NE 1)
(SETO NC 8)
(SETO FAR 7.2)

(60 LOOP)))

((NOT (OR (EQ CURRENT-BEAM 'HISH-SPEED)
(EQ CURRENT-BEAM 'DEFAULT)
(EQ CURRENT-BEAM 'OTHER)))

t(WRITECR "***CURRENT-BEAM MUST BE HIGH-SPEED, DEFAULT OR OTHER.*")
(PRINK 'TYPE A PROBLEM (OR 9 TO QUIT): ')
(SETO PROB (CAR (INPUT-LINE'))
(COND f(EVUAL PROB 'Q) (HALT) (RETURN NIL)))
(SETO GOAL 'SATISFYING)
(SETO CURRENT-SEAM 'DEFAULT)
(SETO NA 36)
(SETO NB 8)
(SETQ NC U)
(SETO FAR 7.2)

(GO LOOP))))

(PRSW:USH (LIST 'GOAL GOAL) RESULT)
(PRISM:PUSH (LIST 'NA NA) RESULT)
(PA.qM:PUSH (LIST 'NB NB) RESULT)
(PRISM:PUEH LIST 'NC NC) RESULT)
(PRI9S:PUSH (LIST 'CURRENT-BEAN CURRENT-BEAM) RESULT)
(PRISM:PJSH tL!ST 'FAR FAR; RESULT)

F-8

(RETURN RESULT)))

(DEIPR 6REATERI (I Y)
(AND (NUNBERP 1) (NUfDERP Yl (GREATERP I Y)))

(DEXPR IDENTIFY-ALTERNATIVES 0
(PROS (RESULT ALTERNS ALT)
(SETQQ ALTERNS (0.1 19 .1 1 9.1) (1.1 1 9.1 10.15) (.1 19 .11 9.2)

(9.1 11.15 1 9.) (9.1 19.1518,15) (9.1 11.1519.2)
(1.1 11.2I 1.1) (LI 18.211.15) 1(1.1 8.218.2)
(6.1 21.11 1I) (9.1 2 1i 1 9.15) (2.1 2 9.1 11.2)
(9.1 2 8.15 1 9.1) (9.1 2 9.15 1@.!5) (9.1 2 9.15 1 9.2)
(9.1 2 9.2 1 9.1) (9,1 2 3.2 1 9,15) (9.1 2 9.2 . 1.21
(1.! 2 .1 2 9.1) (9.1 2 3. 2 9.15) (9.1 2 9.1 2 9.2)
(1.1 2 9.15 2 1.1) (1.: 2 9.15 2 3.15) (9,! 2 1.15 2 9.2)
(8.1 2 2.2 2 9.:) (0.1 2 B.2 2 8.15) (9.1 29.22 9.2)
(9.!5 ! 1.15 1 9.15) (1.15 19 ,!5 1 1.2)
(9.15 1 1.2 1 9.15) (8.15 1 8.2 1 9.2)
(0.15 1.1 1 9. 15) (9.1I 2 8.15 1 e.2)
(9.15 2 ;.2 1 8.15) (9.152 .2 1 .2)
(0.152 @.!5 2 9.15) (8.15 2 9.15 28.2)
(9.15 2 8.2 2 2.15 (9,!5 2 9.2 2 9,2)
(9.2 1 1,2 1 9.2) (1.2 29.2 1 1.2) (9,2 2 a.2 2.21)

(SETQ ALT ALTERNS!

LOOP (PRISM:PUSH (LIST 'TRY (CAR ALT) RESULT)
(COND ((NOT (NULL (COR ALT;), (SETO ALT (COR ALTi)

(60 LOOP)))
(PRISN:PUSH '(ALTERNAT!VES-SET) RESULT)
(RETURN RESULT))

(DEXPR COUNT-PNTS (X! 12)
(PROS (RESULT SIT SETS PERFS PERFSN

XSI XSETS XPERFS
NA NB NC BEAM
INA XN9 INC XBEAM
A2 91 B2 Cl C2 FARU
XA2 XD! X2 XCI XC2 XFARU
WACQ XACD YACQ ZACO WAG XAQ YAO ZAQ OVAM
XWACO XXACG XYAC3 XZACG
XWAG XXA9 XYAQ XZAQ XOVYAM
MAX-WACQ MAX-IACQ MAX-YACI MAX-ZAC9 MAX-WDA IAX-XgA MAX-YQA 1AX-19A
RELNA RELNIB RELNC)

(SETO SIT (CAR XI))
(SETQ SETS (CADR If))
(SET9 PERFS (CADOR XI))

(SETO ISIT (CAR X2))
(SETO XSE7S (CADR 12))
(SETO XPERFS (CADOR 12))

(COND ((EOUAL PERFS XPERFS)
(COND ((6REATERP IA INAI

(PRISPIPUSH (LIST 'S"AN (LIST NA XNA NA1, RESULT)H
((GREATERP INA NA)

(PR!SI:PUSH (LIST 'SPAN (LIST 'NA NA XNA)) RESULT))
(COND ((GREATERP NB IN!)

F-9

(PRISH:PUSH (LIST 'SPAN (LIST 'NB XNB NO)) RESULT)
((GREATERP 1MB I

(PRISM:PUSH (LIST 'SPAN (LIST 'NB NB 1MB)) RESULT))
(COND ((GREATERP NC INC)

(PRISN:PUSH (LIST 'SPAN (LIST XM INC NV)) RESULT))
((GREATERP INC NV)

(PRISN:PUSH (LIST 'SPAN (LIST 'NC NC INC)) RESULT))
(RETURN RESULT))

(SETO MA (CAR SIT))
(SETO NB (CADR SIT))
(SETO NC (CADOR SIT))

(SETO A2 (CAR SETS))
(SETOl 31 (CADR SETS))
(SETO B2 (CADDR SETS))
(SETO CI (CADDDR SETS))
(SETO C2 (CADDDOR SETS))

(SETO OVAM (FLAST PERFS))

(SETQ INA (CAR XSIT'fl
(SETO XNB (CADR XSIT)
(SETO INC (CADDR XSIT))

(SETO XA2 (CAR ISETS))
(SETO XB1 (CADR XSETS;)
(SETO XB2 (CADOR XSETSH
(SETO XCI (CADDDR XSETS))
(SETO IC? (CADODOR XSETS))

(SETO XGVAM (FLAST XFERFE))

(SETO BEAMN (CADDOR SIT!)
(SETO XBEAM (CADDDR XSIT))

(SETO WAC2 (CAR PERFSH

(SETO XACD (CADR PERFS))
(SETO YACQ (CADOR PERF.S))
(SETO ZAC2 (CADDDR PERFEI)

(SETO PERFSI (CDDDDR PERFE)
(SETO WAC (CAR PERFSN))
(SETO XA9 (CAOR PERFSNJ)
(SETO YAQ (CADDR PERF3SN))
(SETO lAO (CADDDR PERFSN)'

(SET9 MAX-WAC9 125) (SETO MAX-XAC9 125) (SE79 MAX-yAlg 125) (SETO

MAX-ZACQ 1251
(SETO MAX-AQA 29O) (SETO NAX-XDA 103) (SETO MAX-YGA 102) (SETO MAX-11A 110)

(SETO OK (AND (LESSP WACO MAX-WACQ)
(LESSP XACO MAX-XACO)

(LESSP YACO NAX-YACO)
(LESSP ZACO MAX-ZACO)
(LESSP WOA MAX-WQA)

(LESSP XQA MAX-XGA)

(LESSP YOA MAX-YOA)

F-10

(SETO PERFSN (CDDDDR PERFSN)
(SETO FARLJ (CAR PERFSNI(

(SETO XWACQ (CAR IPERFS))U(SE-i XXACQ (CADR XPERFSJ)
(SETO IYACO (CADDR XPERFS))
(SET9 XZACQ (CADDDR XPERFS()

(SETO PERFSN (CDDDDR XPERFS()
(SETO XWAD (CAR PERFSN!)
(SEQ XXAD (CADR PERFS10)
(SETO XYAQ (CADDR FERFSN))
(SETQ IZAD (CADDDR PERFSN))

(SETO 10K (AND MLESS? IWACQ MAX-WAC§(
(LESSP IMP MX-XRC2)
(LESS? XYACQ MAX-YAC01i
(LEESP XZACQ IiAX-ZACrQ)

(LEESP 1149A MAX-WQA(

(LEES MAX ~-YgAk
(LESS? XZQA 4P-ZCA.!)

(SE-.9 VV.11 (CAR PEFSN

MCNO (,NOT (E2U4L S:T XSIT
(C04D UGREAERP NA XNA)

(COND ((GRE.TER? XOVAl OVAM)
(PROSW:USH (LIST (LIST REAIN(LIST '(NA -NA(i (LIST 'SREATE.P' XN NAI) (LIST 'BEST MLST 'A2 41

(L!ST 'i21) JLISTi 12 E-21 (LIST 'C, r!) (LIET 'C C7Ml RESULT))
((GREATERP OVAfl XOVAM

(P.R*S,4:?U--H (LST MLST 'R MTD (IT 'MA 4(I4((LIST '*LESE '=,4A (PLUS VIA WU) ((LIST- 'B57 IL:ST
2 TA (LIS '813U LET '2 S-) (IST 'C! XC.) (LIST 'C2 XM2W RESUL)l

(T (PRISM:PUSH' (LIST 'SPAM (LIST VN XNA NV,(RESULT)))

()'SREATE.RP XNA NA:
(COND (SRE.ITER? 01,10 XC'/Am!

(PqRISN:?USH (LIST (LIST 'R- -ATI'3 MiS 'INA =NA) MLST 'ISPEATERP *=NA NW) (LIST 'BEST (LIST 'A2 02

(L797 ' E: Mc LIT '12 192) MST 'C IMC (LIST 'C2 1CU)RSJZM
U6GRE'ATERF XGVANMOY

(FRI1S-M.?YlEH 'LIST (LIST 'RELAJTION LIE '(WA xNA((LIST 'LESEF '=0 (FPUS NA IM M!LIT 'BES3T (LIS-T

AP 1T BI3I _(LST 'B2 B(j (LIST 'C, ClI) (I ST 'C2 C2) REEUTU
C) PSISl:PUq:A MLST 'SFPAN .:T'NA PIA (NA)) REEULTH);

CONS ((3AEATELD N? XNE)
(CORD ((SPEATERP XOVA' CVOMO

(PRISM:?USH (LIST MU'ET '~C MLST '(NB =NB) (LIST 'IPAEP'=.* XNB)) ((LIST 'BEST MS-5 'A2 12'
(LIST 'B) M,57LIS 'B2 2: (LIST 'C' CU (LIST 'C' CQfl1 FESULT))

M^7S:J' MLE LST M--((L * (,NS (LIST LS 'z!3 :PLUSINS 143 W MLS' 'BEET (L.:E
2, Q!)(LS B) (LIST 12? (B) MS- 'Cl IM: (LIST 'C, XCCU RESUL-!!

(T PiiL (L E SFP1 'L lT 'N2 V, 5 NB(REELL'T)!

t((EEATEE:P XN3 NF)

F-li

(PRISNIPUSH (LIST (LIST 'RELATION (LIST '(NB zNB) (LIST 'I6REATERP "sND NB))) (LIST 'BEBT (LIST 'A2 xA2)
(LIST 'D1 XB!) (LIST '82 1D2) (LIST 'Cl ICI) (LIST 'C2 IC2))) RESULT)

((SREATERP ICYAM OVAM)
(PRISM:PUSH (LIST (LIST 'RELATION (LIST '(NB =NB) (LIST '*LESSP "cNB (PLUS MB 11))) (LIST 'BEST (LIST 'A2

A2) (LIST '91 D1) (LIST '92 32) (LIST 'Cl Cl) (LIST V'C2 C))) RESULT)
(T (PRISM:PUSH (LIST 'SPAN (LIST 'NB NB INBI RESULT)

(COND ((REATERP NC INC)
(CON! ((REATERP XOVAI OVAN)

(PRISK:PUSH (LIST (LIST 'RELATID MIST '(NC =NC) (LIST 'f6REATERP '=NC INC))) (LIST 'BEST (LIST 'A2 A2)
(LIST '91 B!) (LST '32 B2) (LIST 'Cl C0) (LIST 'C2 C2))) RESULT))

((REATERP OVAM XOVAM)
(PRISM:PUSH (LIST (LIST 'RELATION (LIST '(NC =NC) (LIST 'iESSP "zNC (PLUS INC 1))) (LIST 'BEST (LST 'A

2 XAZ) (LIST 'B1! Ij (LIST '12 XP2) (LIST 'C! XCl) (LIST 'C2 XC?))) RESULT)
(T (PRISPI:3USN (LIST 'SPAN lIST 'NC INC NC)) RESULT)

()GREATERP XNC NC)
MIOND C(GREA4TER OVA, X0,411)

)PR(SM:?^USH (LIST (LIST 'RELATIGN (LIST '(NC =NC) M^VS
7 "G6REATER? "-NC NC)) (LIST 'BEST (LIST '42 XA2

(LIST '21 X91) L:ST 'B?1 X52) (LIST 'Cl XClI (LI 'C2 XC2;i) RESULfl)
((REATER? XOVA.l OVAM)

)PRISM:FJSH (LIST (LIST 'RE-ATJN4 (LIST "INC =NC) (LIST "LSS=NC (PLUS MCI) I (LIST 'BEST (LIS' 'All
A2:)LST 'BI Bli (LIST '92 32) -%LIST 'C! CIl) (LIST 'C2 M?)) RESULT)

(T (PRIMPJ(IT' SA (LS 'NC NC INC:1RSLW
0 ^MPS (LS(1A ~ lR, LM

(T (CONO ((AND OK (NOT X01K)) (PRISMPUSH (LIST 'Ill-STUAT!94 SIT
SETS 'BETTER-THAN XSETS) RESULT))

(M43,D X0K (NOT 30) PI~PS (LIST 'IN-SITUATIONl SIT
XSETS 'BETTER-THAN SETS) RESULTM)

(COND (IGREATERP OY.A. XOYAM) (PRISM:PUSH (LIST 'IN-SITUATION SIT
XSETS 'BETTER-THAN SETS) RESULT))

,iREATERP XOVAM 'JVAM) (PR!SM:-PIUSH (LIST 'IN-SITUATION SIT
SETS 'BETTER-THAN ISETS) RESULT))

(DEXP?; CALC'JLITE-PERFORMANCE (NA NB NC A2 9192Z Cl C2 FAR)
(PROS IPESUILT FARU WACO lAG! YACQ ZAG! NA9 XA! YAQ ZAQ OVAM ST

P!IP?)PCWP. OPCIA DPCYA DPCIA F'! ?Q0? P93 P94 DPCWQ)PCXg OPOY2 0PGZ
MAX-WAC!g 1AY-XAC!l IAX-YAC9 MAX-ZACQ .AX-N!A MAX-XQA. MAX-YQA MATI-lOP)

(SE7!9 PAX-'4AC! 125) (SET! lP.X-XACG 1251 (SET! MAX-YAC0 125) fSETO IAX-ZAC9 125!
(SETO AX-WQQA ME) (SETO MAX-XiCA M'B (SET! M.AY-YCA 109) (SETO MAX-ZGA lef)

(SET! ST (FPLUS (FTIKES A? NA) (FMES B! 32 NB) (FUMOES CI f! NC)))

(COIND f!)EO? A? @,I) (SET! P1 0.1365) (SETO P2 Z.6456))
IT ~(-ET9 P1 3.6447) (ETM F2 .R)

(S-,T'! DCA (F'2L'TIENT (FTIMESz P1 MIA1) ST)
(SEU2 OPP (F2l;,OTlENT (FTIMESZ P2 2.914) STI)
(SET! OPCYA (FCUr!'TIEN' (FMMES P1! 7.258) STI

(S' PCIA 'Fa!OTIENT (FTLIE3 P2 7.25E 5TH

F- 12

(COND ((EQP 82 1.1) (SETO P01 0.1365) (SETO P92 8.6456))
T (SETO P91 9.6443) (SETO P92 1.9921)

(COND ((EQP 92 1.15) (SETO POI18.38417) (SETO P92 6.931I48))
((SETO P91 1.6443) (SETO P92 8.9921)1

(SETO DPCW9 (F9UOTIENT (FT[NES P9i 2.911 91) SMn
(SENO DPCXG (FGUGTIEHT (FTIMES P92 2.914 BD ST)

(COND ((EQP C2 9.1) (SETO POT 0.1365) (SENO P94 06456))
T (SENO P93 1.6443) (SETO P94 1.9921))

(COND ((EUP C2 1.15) (SENO P93 8,38417) (SETQ PQ4 0.9314e))
((SETO P93 8.6443) (SENO P94 M.921 I)

(SETO DPCYQ (FGUCT!ENT (FTIMES P93 7.2.56 CH SM)
(SENO DPC19 (FgUOTlENI, (FTIMES P94 7.2.58 CH) SI)

(COND ((GREA TERP DPCWA 1) (SETO WACI (FNML DPCWA)
T (SETO WA~CO (FNM D)PCWAM

(CMN ((GREVERP DPCXA ! (SETO XAC74 {FNML Dpr,))l
TI(E XAC9 (F NI. DPCXP.)))

(COND (!SREATERP DPOYA 1) (SET9 YACQ)FNML DPCYAM'
(T (SENg YACQ (FNM DPCYA)

(CGND U(SREATERP DPCZA 1) (SETO ZACD (FNIML UNCAMn
(T (SETO ZAC9 (FNK' DPCZA.)

(COND ((ZEROP NB) (SEa W(94 8) (S EN X94 1)
(T (COND ((BREATERP DPCWG 1) (SETO N9A (FNr.L DPC~WI)

T (SETO WQA (FNM DPV49*))
(COND ((GREATERP DPCXQ 1) (SETO (Qf (FNML DPCXQM')

(T (SETO XCA (FNM Dprlg)fl

(COND (USrRop NC! (SENO YgA 6) (SET2 ZQA fll)
(T (COND ((GREATERP DPCY2 1) (SENO YQA (FNML DPCYGf))

(T (SETO Y'A (FNM DPCYQ)))
(COND ((6FEATERP DPP.Z 1) (SENO ZQA (FNML DPCZQ))

(T (SETO NA (FNM DFCZQJ)l

(SETO FARU 9.996)

(SETO NAM (FPLUE FARU (FTIMES 6.25 (FPLUS WAC3 XAfl2 VAN ZAN))
WGA 194 YQA ZP@.))

(PF1S)1PUSH (LIST 'FAR' F;RU) RE3UJIT
(FRSI:PUSK F l !S. TT 'WAN~ NACQ RE c.LT i

0 (FR!6h:PUSH (LIST IAZQ XACO) RESULT)
(PRISM:PUSH (LIST 'YACQ YACQ! RESULT)
(PRISMi:PUSH (LIST 'ZAC9 ZACQ) RESULT)
(PRISM:DUEH MLST 'NEA KOM) RESULT)
)PRISM:PUSH (LI 'XQA 19A) RESULT?
(PRIMflPUS (LIST YQA YCQi) RE3ULT!
(PRISMi:FUSH (LIST 'ZGA 19A) RESL-)
(FR)Sfl:USX MLST 'UMA, UP)I RESILLr

(COND ('AND (LESS? WACI MAX-WAC91

F- 13

(LESSP XAC9 MH-ACQ)
(LESSP YACg MAX-YACU)
(LESSP ZACO !1AX-ZAC9)
(LESSP W9A NAI-WgA)
(LESS? X9A MAX-XgA)
(LESSP YgA MAX-YgA)
(LESSP W9A MAX-WgA)) (PRISM:FUSH '(PERFORMANCE-OK) RESULT))

(T (PRIEH:PUSH '(PERFORMANCE-BAD) RESULT)))

(RETURN RESULT)

(DEXPR F.411 (U) (FTIMEE 179 tANTILHS (FTI ES U -3.2 !6))))

(DEXPR FNML (U) (FTi'eS 8.55 (.A ITTI n (FT T ES U -1.5365)"))

(nmEXPR SET-NEI1T-TRY (PARAMSf
.FROG(RSUT
(PRISM:-USH MLST 'A2 (CAR PARAMS),) REEULT)

CFIN:LH(LIST II1 (CA-.R PARAMS)) RESILLT)
(PRI;.I:PUFH ItFT '92 (CKDDR PARMSf RESULT)
(PRIS,11:PUSH. "I ST 'Cl (EADDR (CHR PARAMSfl) RESULT)
(PKiSM:PUSH (LIST 'C2 (CADDR !CDDR OARAME.Sfl, RESULT)
,RE T U . RESULT) 1)

STOP
?1DE~LTFOT 1 (GACHP 1,0) (GACHA 51 (TERMNAL 8))

F-14

APPENDIX G

Log of a Session Running the Learning Program,
DISCRIM

G-i

LOG OF A SESSION RUNNING THE LEARNING
PROGRAM, DISCRIM

Listing of File CFLOPPYIDISC.LOG ,3-Nov-67 12:06s16 by

1+- (CLEAR-ALL)

CLEAR-ALL OLD-CASE-NM:
CLEAR-ALL CANDIDATE-RELATIONS-NM:
CLEAR-ALL LEARN-il:
CLEAR-ALL TRIES-WM:
CLEAR-ALL BEST-PERFORMANCES-NM:
CLEAR-ALL THIS-CASE-NM:
CLEAR-ALL CASE-WM:
CLEAR-ALL PREVIOUS-CASE-NM:
CLEAR-ALL CURRENT-CA.SE-WM:
CLEAR-ALL WM:
CLEAR-ALL LEARNING-PM:
CLEAR-ALL INPUT.-SITUATION-PM:
CLEAR-ALL TRY-ANYTHING-FM:
CLEAR-ALL PERFORIMANCE-CHECIK-PM:
CLEAR-ALL SATISFYING-PM:
C'LEA;R-ALL Pl:
NIL
12t- (P Z0 AD D 50R I M

(OSKK""LISPFILES>DISCRIM.;I0

BUILDING START-PROBLEM
BUILDING SET-MONITORING-TO-OPTIMIZE
BUILDING GO-TO-SATISFY
BUILDING SINGLE-HISH-SPEED-TARGET
BUILDING FEW-OTHER-TARGETS
BUILDING HIGH-SPEED-TARGSET
BUILDING DEFAULT-SIT
BUILDING OTHER-SIT
BUILDING FINISHED-PICKING-FIRST-PARAM-SE'T
BUILDING ELIMINATE-TRIAL-HIGH
BUILDING EL-IMINATE-TRIAL-OTHER
BU:LDING ELIMINATE-TRIAL
BUILDING FIRST-SET-IN.-SATISFYING
BUILDING FOR-OPTIMIZING-OR-MONiTORING
2UILD'NG FOR-LEAR NTNG
BUILDING CHECK-PERFORMANCE
BUILDING STORE-CASE-FOR-LEARNING
BUILDING PERFORMANCE-UNACCEPTABLE
BUILDING DECIDE-WHAT-CAN-BE-TRIED
BUILDIN3 RENOVE-SET-TRIED-FI.3T
BUILDING c-GET-NEW.-TR7AL
BU!'D I NG F INTISED-SATISFYIN3
BUILDING FIRST-OPTIMIZING-TRY
BUILDING CHECK-FOR-OVERALL-BEST-SO-FAR
BUILDING TRY-ANYTHING-NOT-TRIED
BUILDING COUNT-POINTS
BJILDING COMPARE-GIASES
ADD-7O TF2ES-WM;
(3-T.AT)bDSk2Y,'LISPFILES;ODISCRIM.;IS

G-2

CYCLE 1

FIRING I
PRODUCTION: START-PROBLEM
MATCHED:
(START)
CLEAR-DM WM:
CLEAR-DM TRIES-WM:
CLEAR-DM CURRENT-CASE-WM:
CLEAR-DM THIS-CASE-WM:
CLEAR-DM BEST-PERFORMANCES-WM:
TYPE A PROBLEM (OR 9 TO QUIT):
:: (((NA 28) (NB 3) (NC 5) (CURRENT-BEAM HIGH-SPEED))

ADD-TO TRIES-WM:
(FAR 7.2)
(CURRENT-BEAM HIGH-SPEED)
(NC 5)
(NB 3)
(NA 28)
(GOAL SATTSFY:NG)
ADD-TO TRIES-WM:
(FIRST-TRY)
tNOT-ALTERNATIVES-SET)
:AD-TO WM:
(NOT-ELIMINATED)
(NOT-CASE-STORED)
(NOT-PERF-KNOWN)

CYCLE 2

FIRING 2
PRODUCTION: GO-TO-SATISFY
MATCHED:
(FIRST-TRY)

CYCLE 3

FIRING 3
PRODUCTION: HIGH-SPEED-TARGET
MATCHED:
(CURRENT-BEAM HIGH-SPEED)
ADD-TO WM:
(A2 .15'
(B1 2)
(B2 .2,
(Cl 2)
(C2 .15)

CYCLE 4

FIRING 4
PRODUCTION: FINISHED-PICKING-FIRST-PARAM-SET
MATCHED:

(A2 .15)
(BI 2)

0-3

(B2 .2)
(Cl 2)
(C2 .15)
ADD-TO WM:
(FIRST-SET)
ADD-TO TRIES-WM:
(TRY (.15 2 .2 2 .15))

CYCLE 5

FIRING 5
PRODUCTION: FIRST-SET-IN-SATISFYING
MATCHED:
(GOAL SATISFYING)
(FIRST-SET)

CYCLE 6

FIRING 6
PRODUCTION: CHECK-PERFORMANCE
MATCHED:
(A2 .15)
(NOT-PERF-KNOWN)
(NOT-ELIMINATED)
(BI 2)
(B2 .2)
(C' 2)
(C2 .15)
(NA 28)
(TRY (.15 2 .2 2 .15))

(NB 3)
(NC 5)
(FAR 7.2)
ADD-TO WM:
(PERFORMANCE-OK)
(OVAM 87.71338)
(ZOA 2.987977)
(YQA 9.83334)
(XOA 8.85367)

(WQA 24.947)
(ZACQ 4.884436)
(YAC9 15.57836)
(XACQ 38.79593)
(WACO 65.12288)
(FARU 9.996)

ADD-TO NM:
(PERF-KNOWN)
DELETE-FROM WM :
(NOT-PERF-KNOWN)

-.......-----------------
CYCLE 7

-.. -------------..- -------
FIRING 7
PRODUCTIOA: STORE-CASE-FOR-LEARNING
MATCHED:
(PERF-KNOWN)
(NOT-CASE-STORED)
(A2 .15)
(B! 2)

G-4

(B2 .2)
(Cl 2)
(C2 .15)
(NA 28)
(NB 3)
(NC 5)
(CURRENT-BEAM HIGH-SPEED)
(WACQ 65.12288)
(XACQ 38.79593)
(YACQ 15.57836)
(ZACQ 4.884436)
(WQA 24.947)
(XQA 8.85367)
(YQA 9.83334)
(ZQA 2.987977)
(FARU 9.996)
(OVAM 87.71338)
ADD-TO CASE-WM:
((28 3 5 HIGH-SPEED)
(.15 2 .2 2 .15)
(65.12288
38.79593
15.57836
4.884436
24.947
8.85367
9.83334
2.987977
9.996
87.71338))

ADD-TO THIS-CASE-WM:
((28 3 5 HIGH-SPEED)
(.15 2 .2 2 .15)
(65.12263
38.79593
15.57836
4.894436
24.947
8.85367
9. 83334
2.987977
9.996
87.71338))

ADD-TO CURRENT-CASE-WM:
(CONDITIONS (28 3 5 HIGH-SPEED))
ADD-TO CURRENT-CASE-WM:
(SETTINGS (.15 2 .2 2 .15))
ADD-TO CURRENT-CASE-WMz
(PERFORMANCES

(65. 1228

38.79'53
15.578:6
4.884436
24.947
8.85767
9. 9:34

2.987977
9.996

87.71738)

G-5

ADD-TO TRIES-WM:
(TRIED (.15 2 .2 2 .15))
DELETE-FROM TRIES-WM:
(TRY (.15 2 .2 2 .15))
ADD-TO WM:
(CASE-STORED)
DELETE-FROM WM:
(NOT-CASE-STORED)

CYCLE 8

FIRING 8
PRODUCTION: FINISHED-SATISFYING
MATCHED:
(CASE-STORED)
(PERFORMANCE-OK)
(GOAL SATISFYING)*****THE PARAMETERS FOR:
PRINT-FIRSTS TRIES-WM:
(CURRENT-BEAM HIGH-SPEED)
(NA 28)
(NB '3)
(NC 5)'**ARE:
PRINT-FIR:TS WM:
(A2 .!5)
(BI 2)
(B2 .2)
(Cl 2)
(C2 .15)**WITH PERFORMANCE VALUES:
PRINT-FIRSTS WM:
(FARU 9.996)
(WACO 65,12288)
(XACQ 38.79593)
(YACO 15.57876)
(ZACQ 4.884476)
(W9A 24.947)
(XQA 8.85367)
(YQA 9.83334)
(ZOA 2.987977)
(OVAM 87.71738)
CLEAR-DM WM:
CLEAR-DM TRIES-WM:
ADD-TO TRIES-WM:
(START)

CYCLE 9

FIRING 9
PRODUCTION: START-PRO3LEM

MATCHED:
(START
CLEAR-OM WM:
CLEAR-DM TRIES-WM:
C'LEAR-DM CURRENT-CASE-WM:
LEIR-DM THIS-CASE-WM:
CLEAR-DM BEST-PERFORMANCES-WM:
TYPE A PROBLEM (OR Q TO QU7T):
: : Q C

E<PL!CIT HFA'T

G-6

9 CYCLES
9 FIRINGS
TOTAL CPU SECONDS = 51.46667
CPU SECONDS PER CYCLE = 5.718517
14+-(PMTRACE NAMES)
SET
154-(DMTRACE NONE)
SET

20*-(CALL INPUT-SITUATION-PM)
214*(ADD-TO TRIES-WM (START))
NIL
22+- (RUN)

FIRING I
PRODUCTION: GO-TO-SATISFY
NO PRODUCTION ACCEPTABLE
I CYCLES
I FIRINGS
TOTAL CPU SECONDS = .97177Z4
CPU SECONES PER CYCLE = .9".734
CPU SECONDS PER FIRING =.9733374
CONFLICT SET STATISTICS:
SATISFYING-PM: AVERAGE SIZE = 0.0, MAXIMUM SIZE 0
INPUT-SITUATION-PM: AVERAGE SIZE 2.0, M: XIMUM SZE = 2
FIRING 2

PRODUCTION: START-PROBLEM
CLEAR-DM WM:
CLEAR-DM TRIES-WM:
CLEAR-D CURRENT-CASE-M:
CLEAR-DM THIS-CASE-WM:
CLEAR-DM BEST-PERFORMANCES-WM:
TYPE A PROBLEM (OR 0 TO QUIT):
:: (((GOAL OPTIMIZING) (NA 28) (NB 3) (NC 5)
(CURRENT-BEAM OTHER))

NO PRODUCTION ACCEPTABLE
0 CYCLES
2 FIRINGS
TOTAL CPU SECONDS = 6.0
CPU SECONDS PER CYCLE = UNDEFINED
CPU SECONDS PER FIRING = 3,0NIL
23+- (CONTINUE)

FIRING 7
PRODUCTION: OTHER-SIT
FIRING 4
PRODUCTION: FINISHED-FICKING-FIRST-PARAM-SET
FIRING 5
PRODUCTION: FOR-OPTIMIZTNG-OR-MONITOR7NG
FIRING 6
PRODUCTION: CHECK-PERFORMANCE
FIRING 7
PRODUCTION: STORE-CASE-FOP-LEARNING
FIRING 8

G-7

PRODUCTION: FIRST-OPTIMIZING-TRY
CLEAR-DM BEST-PERFORMANCES-WM:
*****THE PARAMETERS FOR:
PRINT-FIRSTS TRIES-WM:
(CURRENT-BEAM OTHER)
(NA 28)
(NB 3)
(NC 5)
**ARE:
PRINT-FIRSTS WM:
(A2 .15)
(BI 2)
(B2 .2)
(Cl 2)
(C2 .2)
**WITH PERFORMANCE VALUES:
PRINT-FIRSTS WM:
(WACO 69.434E4)
(XACO 42.86885)
(YACO 13.3046)
(ZACC 5.4 .825)
(WOA 26.40084)
(X A lt81022)

(YOA 4.339954)
(ZOA 3.89685)
(FARU 9.995)

(OVAM 90.5969)
FIRING 9
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 10
PRODUCTION: CHECK-PERFORMANCE
FIRING 11
PRODUCTION: STORE-CASE-FOR-LEARNING

FIRING 12
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 13
PRODUCTION: CHECK-PERFORMANCE
FIRING 14
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 15
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 16
PRODUCTION: CHECK-PERFORMANCE
FIRING 17
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRINS 1.
PRODUCTION: TRY-A:JVTHING-NOT-TRIED

CLEAR-DM WNM:
FIRING 19
PRODUCTION: CHECK-PERFORMANCE
FIRING 20
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 21PRODUCTION:PRDCIN; CHECK-FOR-OVERALL-BEST-SO-FAR

CLEAR-OM BEST-PERFORMANCES-WM:
*4*t*THE PARAMETERS FOR:

G-8

PRINT-FIRSTS TRIES-WM:
(CURRENT-BEAM OTHER)
(NA 28)
(NB 3)
(NC 5)
**ARE:
PRINT-FIRSTS WM:
(A2 .15)
(BI 2)
(B2 .2)
(CI 2)
(C2 .15)
**WITH PERFORMANCE VALUES:
PRINT-FIRSTS WM:
(WACO 65.1228E)
(XAC9 38.79593)

(YACO 15,57836)
(ZACQ 4.864436)
(WQA 24.947)
(XQA 8,5367)
(YQA 9.83334)
(ZOA 2.987977)
(FARU 9.996)
(OVAM 87.71338)
FIRING 22
PRODUCTION: TRY-ANYTHING-NT-TRIED
CLEAR-Dr WM:
FIRING 23
PRODUCTION: CHECK-PERFORMANCE
FIRING 24
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 25
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 26
PRODUCTION: CHECK-PERFORMANCE
FIRING 27

PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 28
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 29
PRODUCTION: CHECK-PERFORMAl!CE
FIRING 30
PRODUCTION: STORE-CASE-FOR-LEARNTNG
FIRING 31
PRODUCTION: CHECK-FJR-OVERALL-BEET-SO-FAR
CLEAR-DM BEST-PERFOPMANCES-WM:
*k*4*THE PARAMETERS FOF.:

FR!NT-FIRETS T;iES-WM:
(CURRENT-BEAM OTHER,
(NA 28)
(NB 3)
(NC 5)
**ARE:
PRINT-FIRSTS WM:
(A2 .15)
(BI 2)
(82 .2)

G-9

(C1 1)
(C2 .2)
**WITH PERFORMANCE VALUES:
PRINT-FIRSTS WM:
(WACO 60.41958)
(XACg 34.56657)
(YACO 12.92589)
(ZACQ 4.675394)
(WQA 21.47368)
(XQA 7.028516)
(YQA 12.92509)
(ZQA 4.675394)
(FARU 9.996)
(OVAM 84.24534)
FIRING 32
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 33
PRODUCTION: CHECK-PERFORMANCE
FIRING 34
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 35
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WNI:
FIRING 36
PRODUCTION: CHECK-PERFORMANCE
FIRING 37
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 38
PRODUCTION: TRY-ANYTHING-NOT-TRIED

CLEAR-DM WM:
FIRING 39
PRODUCTION: CHECK-PERfORMANCE
FIRING 40
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 41
PRODUCTION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 42
PRODUCTION: CHECK-PERFORMANCE
FIRING 43
PRODUCTION: STORE-CASE-FOR-LEARN:NG
FIRING 44
PRODUCTION: TRY-ANYTHING-NOT-TRIED

CLEAR-DM WM:
FIRING 45
PRODUCTION: CHECK-PERFORMANCE
FIRING 46
PRODUCTION: STORE-CA E-FOR-LEARNING
FIRING 47
PRODUCTION: TRY-ANYTHIN3-NOT-TRIED

CLEAR-DM W4:
FIRING 48
PRODUCTION: CHECK-PERFORMANCE
FIRING 49
PRODUCTION: STORE-CASE-FOR-LEARNINS
FIRING 5
PRODUCTION: TRY-ANYTHING-NOT-TRIED

CLEAR-DM WM:

G-1O

FIR1NS 51
PRODUCT ION; CHE'CK-PER7'JRMANCE'
FIRING 52
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 3
PRODUCTION: TRY-ANYTNINC'-NOT-TRIED
CLEAR-Oil WM:
FIRING 54
PRODUCTION: CHECK---PERFORMANCE
FIRING 55
PRODUCTION: STORE-CASE-FOR-LEARNING
FIRING 56
PRODUC7ION: TRY-ANYTHINS-NOT-TP lED
CL-EAR-ON WM:
FIRING 57

FIRiNG 58
PRODUCTION;:TF-~EF ?L~Ni
F:FtINS 59
PRODUCTlO.N: T RY - ANY -H* 1iG -J DGT T AS
CLEAR-DN W&:

FIRING 61

FIRING 62

PRODUC 7I'JN: CT9ECAE-FRLI FJu
FIRING 64
P RD CLCTI 2: 37VPA Z t-NC7T -, 3

CLEA3-DN WM:
CS1N2 6:

PRJOUCTION: CHN-ERT I

FIRING 6
PR 3 1) M T I : T R-N E9:1GNvTL

FIRING 65
RRJ:UEQCT J24 CT A'-'1%'3R- ,IC

FIRiNG 67

PRO*J-CT!Q S2 7, EsEF YW

7: C 'C

FIRI"JG 7'7

PRODUCT±.IN S.70 -.- A Z- , -L -lINC

FIUME 72
PRrDUrTION; CA4EK-E RFOl-,ANCE

FIRING 76

PRODUCTION; STORE-CASE-FOR-LEPNING
FIRING 77
PRODUCTION: TRY-ANYTHINS-NOT-TR'ED
CLEAR-DM WM:
FIRING 78
PRODUCTION: CHECK-PERFORMANCE
FIRING 79
PRODUCTION: STORE-CAEE-FOF-LEA.RNING
FIRING 60
PRODUC ION: TRY-ANYTHING-NOT-TRIED
CLEAR-DM WM:
FIRING 81
PRODUCTION-. CHECK-PERFORMANCE
FIRING 82
P RODUCT ION: TR-C-OLE NG
FIRING 8 '
P D'jC7TION: TRY-ANYTW NG-N0T-TR7:n
CLEAR-OM W.M:
FiRING .34
PRODUCTION4: CHECK-'E.RF9R'iANCE
FIRING 95
PRODUCT ION: T-E--ERN 2
FIRING 66

PR'JC'CTION: T R Y-AN YT H :N ilNOT- R:ED
CLEAR-ON. WM:
24- (CALL INFUT-E TT'JAT Ctv- -r
NI L
2154k-(~CL-:A R - DM 7.R 9S-~

CLE.AR-DM TRIES-Wti.:NIL
264 -(ADD-TO TRIES-WM (STAF7))
N TIL

2 7 (RJN.

FIRING I
PRODUCTION: STAR-,-PROLE-M
CLEAF:-DM WM:
CLEAR-OM TRIES-WM
CLEAR-DM CIURRENT-CASE-NM:
CLEAR-DM THITS-CA5E-'AN:l
CLEAR-Or! BEST-PERFORMANCES-wri
TYPE A FRC3LEM (OF 0 TO QI-):

F'R(N 2~

FIFING4
P'iODUC-ION: F IN SH ED-CK M - F R SrPA Rl M- SET
FI F.I NG 5
PRODUCTfON: F SG -S E T - 1- 3 AT:E F YIN5
F:RI'43 6
P RGE,'C UT .- "iON: -. KPEF~A
F I ':PC- 7
PR 7 R:Du:TEO T 0S73-C A EFOR- LE ARN : N

G- 12

FIRING 8
PRODUCTION: FINISHED-SAT)ISFYING*****THE PARAMETERS FOR;
PRINT-FIRSTS TRIES-il:
(CURRENT-BEAMl DEFAULT)
(NA 36)
(NB U)
WN @)**ARE:
PRINT-FIRSTS WM:
(A2 .15)
(81 2)
(B2 .2)
(CI 1)
(C2 .2)**WITH PERFORMA~NCE VALUES:
PRINT-FIRSTS WM:
(FARU 9.9961
(WAO 49.88607)
CXAC'2 25.,7632'
(YACO 8.01-963)
(ZAC2 4.1SZ?2-4)
(WQi4 0)

(XOA @I

:'EAR-D OX WMi
rLEAR-DMX TREc-lAM:
FR:NG q
PRODUCTIONJ: START -PROBLE."
CLEAR-DMl WMi
CLEA,'.-DM TRIES-W,4i:
CLEAR-Oil CURRENT-CASE-W!r:
CZ! -AR-i THI3-CASE-WM:
C -EA.'4,DM FEST-PERFJPMAP4CE-JWM:
TYPE A PROBLEM (OR 0 TO QUIT)%

(((NA 32) (NC 4) (CURRE !r BEAM OTHER))

FIRING 10
FRw^DU'CTION; GQ-T0-6ATIT~y
FIRING 11
PRODUJCTION: 07'HER-31T
F:RINO 12
PRODUCTI)N: FIHD?(N-I~-MS
FIRING 13,
PRODUCTIONt FIR3T-SE7-AIN-ST!7'.Y~iG
FIR!!NG 14

FI1RI NG 15
PRODUCT701: ST0T(E-CASE2-FO-,R-LEAr%4NN
F:FI~NG 16
PRODUCTION- FI.NISHED-SATi3FYIlNG*44*7H.U 7-,A.I~c'77 JR:
PRN7-FIRSTS TRIES-WM:
(CURRENT-BEAM OT HER)
(NA '2)
(N3 8;
(NO 4J**ARE:
P'R:NT-FIRS-S WII:

0A2 .15)

(B2 .2)
(CI 2)
(C2 .2)**WITH PERFORMANCE VALUES:
PRINT-FIRSTS WM:
(FARU 9.996)
(WACO 60.419!e)
(XAC2 34.565)
(YACO 12.92599)
(ZAC.Q 4.675394)
(!40A 0)

(YQA 3.9076S4)

(OVAM 44.6029c)
CLEAR-OM Wl:
C .EAR-DM TRIES.-WM:
FIR!NG 17
PRODUCT ION- ETART -PR^2:DLEMl

uCEA-1M WM.

CLEAR-DM UEN-A-"M
CLEAR-OM TH -S-CASE-WM:

P P R Q3EM %iOR 0 T~ 3QU:T)

1RN P) NC .

PRODUCTION: 2-O3T:~
F:RING 19
PRODUCTION: DF;L-I
FIR:NG 22
PRODUCTiGN: FNSE- SFRTPR'-E
FIRIN3 21
P302U'CTION: c iRCT-3z7- IN-5!T IS YING

F:RING 2
PRGDU7:T:0N; ~(F~OM
F:R!lJG 27.

;:coUCTic'"4: STJE;4EF3-ER3

~iJDUCrTn,%1 c, E-D-2A5 NG- t7H!:-R AME E R 52
PF 7NT-F 7 RETE TRES-W)4 :

IN: 4.;t* g E.
PR7.NT-F IRCT S M

5~ 2)
? 2 .2)

FR' T1-F T'STO w ri
(FARU 0,94

G-14

(XAC9 27.5.f!43'
(YACQ 8.944876)
(ZACO 4,2851231
(WQA 0)
(X9A 0)
(YQA 8.944876
(ZQA 4.289123)
COYAr. 46.45t 1I)
CL.EAR-DM Wm.
CLEAR-ON TRIES-WM:
FIRINS 25
PRODUCTION: START-PROBLE
CLEAR-DM Wt.-
CLTAR-DM1 TRIES-WM:
CLEAR-OM C.URRENT-CA.SEW.
CLEAVR-OM THIS-CAEE-WM:
CLEAR-DMi BEST-PER ORMANCEE-W-':-
TYV- C A PROBLE)il IOR 0 TO OUT!:

:'NA 2 5) (NB 5) 011C 6-)

F[R!NG,. 26
?RDJCUN: 0-TO-- 7'-:4

OR] n'" T IDN: DE: U:7VJ '
F~FI N1 28
2P oYC -.T OM 7,. T3C '.'- R,7-IR ;'
F 5. 7N,' 2 9
PR3DUC7t.JN; FIRST -S: 'N-AT13FYNG

FIRIN~ C,7
PRODUCTION:; STORE- A" :FJR-LE;.-RN41IG
FIRING 32
PRODUCTION: IIH ~SYG,~*~ EESFR
PRINT-FIRE-S TRIE AM.
(CLRRENT--A' DEF. U! T)
(?!A 25)
(N3 5.1

FPR"IN-F:FiR3 WN:

0E . C1.81SZ

((wl:, 2F .'' I,-- _

(XO. 9.439)

(YCA I5.E48Z2'
(N. 4. ?0- 4,7
(CVAr' 9647Z66)

G-15

CLEAR-DM WM:
CLEAR-ON TRIES-Wit
FIRING 33
PRODUCTION: START-PROBLEM
CLEAR-ON Wit
CLEAR-ON TRI.E-M:
CLEAR-ON CURRENT-CASE-WM:
CLEAR-UN TXIS-CASE-WM:
CLEAR-ON BESr-PERFORMANCES-WN:
TYPE A PROBLEM (OR Q TO QUIT):

(NA 323) (I12 I04(C 2) (CURRENT-BEAM HIGH-SPEED"

FIRING 34
F'VDU"T:IOM. GO3-TJ-SAT_:FY
FIRING :35
PlROJ0U C T I9N H3 H -S? ElD- T ARE T
F:MRINF 36

R 7 %i3 2
FRO)12.CT I,2,N C t' E,_- PEZRFMRC E
FIR 11P !: c -

F:I C T:'I

CPURRN -~~ r.REA IEHSWN:;

CRR1AEN ?E~l ihSE

'A

N E*R ' 'Ac .E:
F'' JT IRqSTSN:

S-F

FFJNT- rrr - 51,4

(X . 5=5_ 1;0 1

FlZiC 4 '565

FXI .R 5)DC"" R R2

CLE -D!'A t,
CLE 17-ON r0 -1

0;CESDV' Tt2:3-CATH-WN;

G-16

CLEAR-DM BEST-PERFORMANCES-WM:
TY?E A PROBLEM (OR 0 TO QUIT):
:: (((GOAL LEARNING) (NA 32) (NB 1) (NC 3)
(CURRENT-BEAM OTHER))

FIRIN3 42
PRODUCTION; 60-TO-SATISFY
FIRING 43
PRODUCTION: OTHER-S!T
FIR:NG 44
PRODUCTION: FINISHE-P!KING-FIR-PPA'-SET
FIRING 4!
PRODUCTIO4: FOR-LEAR17.1IG
FIFINe 46
PROD,'.CT IN: CHECK-?9ERpERM!NC7
F :R7N 7 47
PRODUCTIQiI: STORE-CA. E-F:-LERN:"
NO PROJ'"C,ION ACCEprABLE
_3 CY:'.ES

.QTAL CP J SECON.DS 3 .163.1.-7
CPU SECN(D.E PER CYCLE = 5- 0949&4

SET

3" I - (,-, T4N T I NUE)

CYCLE 34
PRiNT-CONTENTS CASE-WM:
((32 1 .3 OTHER)
(.15 2 .2 2 .2)
(60. 1195
34.56557
12.92509
4. 67579a
21. 47..,3
7.?2851_,

2.5Z6645
9.996
73,10517)

((3. 1 P G.,H-SPEE
.5 . .2 ". .1.5)

(5Z.S725a

3 E , .3 6 '3"., 4
A~

-~i6A

.4A "5'

{ Z, .3 ,3

6. 2384!S
2. 526..I -

..99f!

G2-17
.9?6

((25 5 6 DEFAULT)
(.15 2 .2 1 .2)
(65. 57398
39.2105
15.84852
4.904149
25. 2938
9.0439
15.84852
4.904149
9.996
96.47066))

((3 2 0 4 DEFAULT)
(.15 2 .2 1 .2)
(52.11901 27.53143 8.944976 4.289123 9 0 8.944876 4.299!23
9.996 46.45111))
((32 0 4 OTHER)

(.15 2 .2 2 .2)

(60.41?53 34.56656 12.?2500 4.675394 a a 3.903464 2.556644
9.996 44.60'296-)
(36 0 DEFAULT)
(.15 2 .2 1 .2)
• ,..,J7 -25.736312 R.32067 4.,80,?24 8 6 6 9. 9 9 3. 51?

(28 3 5 OTHER
(.1 2 .2 1 .15)
(126. 5.731
42. 0627t
81 .47518
5 2442l,
10. 46601
4.449867
21.4.12-7

3.984175
9. 9
114. 176'

(23 3 5 OTHER)
(.1- - 2 .2 1 .2)
(60.4:95S
.4,! A657
12. 9260

4. 67594
21. 47-63

. 675 6

9-) 9747

4 .6 '
6 123 5 -1 E

: . 45
9.761
6.6:.G52-

9. *

G-18

0

111. 5 6))

((28 3 5 OTHER)
(.15 2 ,15 2 .2)
(66.90707
40.44466
16.66322
4.96208
55,91216
11.46778
4.217375
2.879794
9.996
116.7174))

(;28 3 5 OTHER)
(.15 2 .2 2 .15)
(65.12288
38.79593
15.578;6
4. B44736
2a.947
8.85367
9. 6-j -.
2L. 27917

9.996
87, 7132;)

((28 3 5 OTHEI
(,2 1 .2 1 .2)

(;-7.7792
41.259 2
17.20951
4.999721
67.77925

17,2951
4.999721
9.996
174,8557)

((28 3 5 OTHER
(.2 2 .2 1 .21
(72.74717
46,00701,

20. 52497
6.55, IT

20.524?7
6.556113
9.916

1 17. 1
((13 3 5 OTHER)

(.2 2 .2 2 .2)
'280. 11Z59

5Z, '7766

26.09974
9. 49866
37.75434
16.757734
4.63458

G5575'1

G-19

9.996
115. l6"4)

((28 3 5 OTHER)
(.15 2 .2 2 .2)
(69.48484
42.86885
18.30846
5.498253
28.40084
10. 81022
4.339954
3.009685
9. 996
90.5968)

((28 3 5 HiGH-SPEED)
(. 15 2 .2 2 .15)
(65. 1229?
38. 7959T
15.57876
4.994436

44.947
S. E!367
9.834
2.927977
9. 96
87, 7178))

PRINT-CONTENTS CURRENT-CASE-WN;
'P ER FQ F, M A N CE 3
(60. 41959

34. 56,!57
12.9253 o

4. 675794

7. 9285 .6

3. 907664
2. 55 645
9.996
7L, 185t7))

.... TIN G 5 .. . 2 2 2 ,2))
(C0IDTTIOS (5 2 1 3, OHE)
FF 1 NT-CONTE,,VTS Wt':
(CASE-STORED)
(PER,-- 'N[WN:

FZIU o 95

(WA CJ 60.4-956)
(XACQ 3'.56657)
'A C 12-9?'5-3?)

(ZAC 4.675:94)
(*WQA 2 .4 7-6c

(x)P~ 7 , :'85 1 .
(YQPA -3.907664)
(ZQA . .. - 5' -A

(OVAM 73.10517)

(F E R F A N '2 E - K

(Ci2

(,1 2)

G-20

(AZ 15'-
NOT-EL I INATE)

G-21

